scholarly journals Future Irrigation Water Requirements of the Main Crops Cultivated in the Niger River Basin

Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 439
Author(s):  
Abdoulaye Oumarou Abdoulaye ◽  
Haishen Lu ◽  
Yonghua Zhu ◽  
Yousef Alhaj Hamoud

Precise agricultural predictions of climate change effects on crop water productivity are essential to ensure food security and alleviate water scarcity. In this regard, the present study provides an overview of the future impacts of climate change on the irrigation of agricultural products such as rice, millet, maize, cassava, sorghum, and sugar cane. These crops are some of the most-consumed foodstuffs in countries of the Niger River basin. This study is realized throughout 2020 to 2080, and three Global Climate Models (GCMs) (CSIRO, MIROC5, and ECHAM. MPI-ESM-LR) have been used. The GCMs data have been provided by the IPCC5 database. The irrigation water requirement for each crop was calculated using Smith’s CROPWAT approach. The Penman–Monteith equation recommended by the FAO was used to calculate the potential evapotranspiration. The inter-annual results of the IWR, according to the set of models selected, illustrate that the largest quantities of water used for irrigation are generally observed between January and March, and the lowest quantities are the most often seen between July and September. The majority of models also illustrate a peak in the IWR between March and April. Sorghum and millet are the crops consuming the least amount of water for irrigation; followed by cassava, then rice and corn, and finally sugar cane. The most significant IWRs, which have been predicted, will be between 16.3 mm/day (MIROC5 model, RCP 4.5) and 45.9 mm/day (CSIRO model, RCP 4.5), particularly in Mali, Niger, Algeria, and rarely in Burkina-Faso (CSIRO model, RCP4.5 and 8.5). The lowest IWRs predicted by the models will be from 1.29 mm/day (MIROC5 model, RCP 4.5) to 33.4 mm/day (CSIRO model, RCP 4.5); they will be observed according to the models in Guinea, southern Mali, Ivory Coast, center and southern Nigeria, and Cameroon. However, models predict sugarcane to be the plant with the highest IWR, between 0.25 mm/day (Benin in 2020–2040) and 25.66 mm/day (Chad in 2060–2080). According to the models’ predictions, millet is the crop with the most IWR, between 0.20 mm/day (Benin from 2020 to 2060) and 19.37 mm/day (Chad in 2060–2080). With the results of this study, the countries belonging to the Niger River basin can put in place robust policies in the water resources and agriculture sectors, thus ensuring food security and high-quality production of staple crops, and avoiding water scarcity while facing the negative impacts of climate change.

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Xiangzheng Deng ◽  
Chunhong Zhao

In ecologically fragile areas with arid climate, such as the Heihe River Basin in northwestern China, sustainable social and economic development depends largely on the availability and sustainable uses of water resource. However, there is more and more serious water resource shortage and decrease of water productivity in Heihe River Basin under the influence of climate change and human activities. This paper attempts to identify the severe water scarcity under climate change and presents possible solutions for sustainable development in Heihe River Basin. Three problems that intervened land use changes, water resource, the relevant policies and institutions in Heihe River basin were identified, including (1) water scarcity along with serious contradiction between water supply and demand, (2) irrational water consumption structure along with low efficiency, and (3) deficient systems and institutions of water resource management along with unreasonable water allocation scheme. In this sense, we focused on reviewing the state of knowledge, institutions, and successful practices to cope with water scarcity at a regional extent. Possible solutions for dealing with water scarcity are explored and presented from three perspectives: (1) scientific researches needed by scientists, (2) management and institution formulation needed by governments, and (3) water resource optimal allocation by the manager at all administrative levels.


Agriculture ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 593
Author(s):  
Oludare Sunday Durodola ◽  
Khaldoon A. Mourad

African countries such as Nigeria are anticipated to be more susceptible to the impacts of climate change due to reliance on rainfed agriculture. In this regard, the impacts of climate change on crop water requirements (CWR), yields and crop water productivity (CWP) of soybean in the Ogun-Ona River Basin, Nigeria, were evaluated for the baseline period (1986–2015) and future period (2021–2099) under Representative Concentration Pathway (RCP) 4.5 and 8.5 scenarios using AquaCrop Version 6.1. Future climate projections from the Swedish Meteorological and Hydrological Institute’s climate models (HadGEM2-ES and RCA4) were used in simulating the future scenarios. The results show that for the baseline period, CWR and yield are increasing while CWP shows a slight increase. For the future period, the CWR is projected to fluctuate and depend on the rainfall pattern. Meanwhile, carbon dioxide fertilization has positive effects on yield and is projected to increase up to 40% under RCP 8.5. The results of this study certainly offer useful information on suitable adaption measures which could be implemented by stakeholders and policymakers to improve soybean productivity in Nigeria.


2013 ◽  
Vol 4 (4) ◽  
pp. 422-439 ◽  
Author(s):  
S. Shrestha ◽  
B. Gyawali ◽  
U. Bhattarai

This study highlights the spatial and temporal impacts of climate change on rice–wheat cropping systems, focusing on irrigation water requirement (IWR) in the Bagmati River Basin of Nepal. The outputs from a general circulation model (HadCM3) for two selected scenarios (A2 and B2) of IPCC and for three time periods (2020s, 2050s, and 2080s) have been downscaled and compared to a baseline climatology. CROPWAT 8.0 model is used to estimate the water requirements. IWRs show different trends in different physiographic regions and different growth stages of rice and wheat. A decreasing trend of IWRs in the Mid Hills and the High Hills indicates that farmer-based small irrigation schemes are sufficient to meet the requirements. However, in the Terai region, where there is an increasing trend in IWRs, the deficit volume of water needs to be supplied from potential large-scale irrigation schemes.


2020 ◽  
Vol 30 (1) ◽  
pp. 85-102 ◽  
Author(s):  
Qihui Chen ◽  
Hua Chen ◽  
Jun Zhang ◽  
Yukun Hou ◽  
Mingxi Shen ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1548
Author(s):  
Suresh Marahatta ◽  
Deepak Aryal ◽  
Laxmi Prasad Devkota ◽  
Utsav Bhattarai ◽  
Dibesh Shrestha

This study aims at analysing the impact of climate change (CC) on the river hydrology of a complex mountainous river basin—the Budhigandaki River Basin (BRB)—using the Soil and Water Assessment Tool (SWAT) hydrological model that was calibrated and validated in Part I of this research. A relatively new approach of selecting global climate models (GCMs) for each of the two selected RCPs, 4.5 (stabilization scenario) and 8.5 (high emission scenario), representing four extreme cases (warm-wet, cold-wet, warm-dry, and cold-dry conditions), was applied. Future climate data was bias corrected using a quantile mapping method. The bias-corrected GCM data were forced into the SWAT model one at a time to simulate the future flows of BRB for three 30-year time windows: Immediate Future (2021–2050), Mid Future (2046–2075), and Far Future (2070–2099). The projected flows were compared with the corresponding monthly, seasonal, annual, and fractional differences of extreme flows of the simulated baseline period (1983–2012). The results showed that future long-term average annual flows are expected to increase in all climatic conditions for both RCPs compared to the baseline. The range of predicted changes in future monthly, seasonal, and annual flows shows high uncertainty. The comparative frequency analysis of the annual one-day-maximum and -minimum flows shows increased high flows and decreased low flows in the future. These results imply the necessity for design modifications in hydraulic structures as well as the preference of storage over run-of-river water resources development projects in the study basin from the perspective of climate resilience.


Author(s):  
Kaisa Seppänen ◽  
Chakra Bahadur Chand

The Rural Village Water Resources Management Project Phase II (RVWRMP-II) works in some of the most remote, food insecure and water scarce areas of Nepal, where the impacts and effects of climate change are already visible. The farmers of the project region are dependent on rain-fed agriculture. Large parts of the project area (parts of Humla and Bajura Districts, for instance) depend on food aid.In Phase II, specific attention is being paid to climate change adaptation, efficient use of water for agriculture, and food security and nutrition.RVWRMP facilitates communities to design and implement Water Use Master Plans (WUMP). One of the objectives of a WUMP is to optimize the use of water for agriculture. Micro-irrigation, rain water harvesting, multi-use schemes, using drainage water from tap stands for home gardens and organic fertilizers are some of the ways to improve the food security in the communities. Water source protection, watershed conservation, soil protection and crop selection are key technical areas of interest to enable adaptation to the anticipated changes in climate.DOI: http://dx.doi.org/10.3126/hn.v11i1.7205 Hydro Nepal Special Issue: Conference Proceedings 2012 pp.54-58


2007 ◽  
Vol 7 (3) ◽  
pp. 149-159 ◽  
Author(s):  
J. A. Rodríguez Díaz ◽  
E. K. Weatherhead ◽  
J. W. Knox ◽  
E. Camacho

Sign in / Sign up

Export Citation Format

Share Document