scholarly journals Water Management Balance as a Tool for Analysis of a River Basin with Conflicting Environmental and Navigational Water Demands: An Example of the Warta Mouth National Park, Poland

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3628
Author(s):  
Dorota Pusłowska-Tyszewska

Allocating finite water resources between different water uses is always a challenging task. Searching for a solution which satisfies the water needs (requirements) of all water users without compromising the water requirements of river ecosystems calls for analyzing different water management options and their expected consequences. Water management balances are usually used for comparison of water resources with the needs of water users. When aquatic and water dependent ecosystems are considered in a similar manner as other users, searching for the optimum water resources allocation, without neglecting requirements of the natural environment, is possible. This paper describes basic modeling assumptions and methodological solutions, which allow for taking into account some tasks related to the protection of aquatic and water dependent ecosystems. The water balance model, developed for a catchment comprising the Warta Mouth National Park, was applied to find out whether supplying adequate amounts of water for conservation (or restoration) of wet meadows and wetland habitats in the area is possible, while still satisfying the demands of other water users.

Water ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2347 ◽  
Author(s):  
Vasileios A. Tzanakakis ◽  
Nikolaos V. Paranychianakis ◽  
Andreas N. Angelakis

This paper provides an overview of the Special Issue on water supply and water scarcity. The papers selected for publication include review papers on water history, on water management issues under water scarcity regimes, on rainwater harvesting, on water quality and degradation, and on climatic variability impacts on water resources. Overall, the issue underscores the need for a revised water management, especially in areas with demographic change and climate vulnerability towards sustainable and secure water supply. Moreover, general guidelines and possible solutions, such as the adoption of advanced technological solutions and practices that improve water use efficiency and the use of alternative (non-conventional) water resources are highlighted and discussed to address growing environmental and health issues and to reduce the emerging conflicts among water users.


2020 ◽  
Author(s):  
Ioannis Michail Bairaktaris ◽  
Anastasios Lemonis ◽  
Emmanouil Mantzouranis ◽  
Georgios Rontiris ◽  
Dionysios Nikolopoulos ◽  
...  

<p>Traditionally, the use of stochastic models within water resources management aim to provide synthetically-generated inflow time series that reproduce the statistical regime of the historical data. On the other hand, the water uses are typically handled as steady-state elements, which follow a constant seasonal pattern over the entire simulation horizon. However, given that the demands are associated with highly uncertain hydroclimatic and socioeconomic factors, they should also be considered as random variables, as made for inflows. Using as example a complex hydrosystem in Western Thessaly, Greece, comprising both surface and groundwater resources to serve irrigation, water supply, environmental and hydroelectric uses, we demonstrate the advantages of a fully stochastic setting of the water management problem over its traditional configuration. Among others, we investigate the use of synthetic demands that are correlated with inflows, given that both are driven by hydroclimatic processes. Data syntheses are employed with the recently introduced AnySim stochastic simulation package (https://www.itia.ntua.gr/en/softinfo/33/).</p>


2021 ◽  
Author(s):  
Sandra Ricart ◽  
Andrea Castelletti

<p>Balancing socio-ecological systems among competing water demands is a difficult and complex task. Traditional approaches based on limited, linear growth optimization strategies overseen by command/control have partially failed to account for the inherent unpredictability and irreducible uncertainty affecting most water systems due to climate change. Governments and managers are increasingly faced with understanding driving-factors of major change processes affecting multifunctional systems. In the last decades, the shift to address the integrated management of water resources from a technocratic ‘‘top-down’’ to a more integrated ‘‘bottom-up’’ and participatory approach was motivated by the awareness that water challenges require integrated solutions and a socially legitimate planning process. Assuming water flows as physical, social, political, and symbolic matters, it is necessary to entwining these domains in specific configurations, in which key stakeholders and decision-makers could directly interact through social-learning. The literature on integrated water resources management highlights two important factors to achieve this goal: to deepen stakeholders’ perception and to ensure their participation as a mechanism of co-production of knowledge. Stakeholder Analysis and Governance Modelling approaches are providing useful knowledge about how to integrate social-learning in water management, making the invisible, visible. The first one aims to identify and categorize stakeholders according to competing water demands, while the second one determines interactions, synergies, overlapping discourses, expectations, and influences between stakeholders, including power-relationships. The HydroSocial Cycle (HSC) analysis combines both approaches as a framework to reinforce integrated water management by focusing on stakeholder analysis and collaborative governance. This method considers that water and society are (re)making each other so the nature and competing objectives of stakeholders involved in complex water systems may affect its sustainability and management. Using data collected from a qualitative questionnaire and applying descriptive statistics and matrices, the HSC deepens on interests, expectations, and power-influence relationships between stakeholders by addressing six main issues affecting decision-making processes: relevance, representativeness, recognition, performance, knowledge, and collaboration. The aim of this contribution is to outline this method from both theory and practice perspective by highlighting the benefits of including social sciences approaches in transdisciplinary research collaborations when testing water management strategies affecting competing and dynamic water systems.</p>


Author(s):  
Thomas Bernauer ◽  
Anna Kalbhenn

Freshwater is one of the most valuable natural resources on Earth. However, many of the more easily accessible freshwater resources at local and regional levels have suffered from overexploitation due to increasing population density, economic activity, and unsustainable water management practices. Sustainable management of domestic water resources is a challenging task mainly due to water allocation, pollution, and other problems on international rivers. Social science research has contributed in a variety of ways to identifying sources of international conflict and cooperation, water management options, and institutional solutions for achieving sustainable international water management. The scholarly literature has tackled a wide range of crucial questions arising from the politics of international freshwater resources, such as: whether there is sufficient evidence for the “water wars” claim—that is, whether water-related factors influence the probability of armed conflict; the determinants of international river basin cooperation, in terms of policy output and policy outcome or impact; how we can determine whether international water management efforts are successful in terms of solving problems that motivate cooperation; and the extent to which the literature offer insights into institutional design options that are effective in terms of problem solving. These studies have produced a considerable amount of policy-relevant analytical concepts and empirical findings. For example, fairness (equity) is one of the key concerns of all governments when they engage in international water cooperation, and integrated water resources management may look nice on paper but does usually not produce the desired results.


2003 ◽  
Vol 47 (6) ◽  
pp. 149-151 ◽  
Author(s):  
B. Braga ◽  
J. Granit

Growing demand for water leads to increased competition between water users. A holistic, participatory and decentralized water management approach is promoted to reach a fair allocation mechanism between competing water uses. Domestic political discourse has a strong influence on water policies being developed.


2005 ◽  
Vol 51 (5) ◽  
pp. 97-103 ◽  
Author(s):  
P.J. Bereciartua

There is evidence of the increasing economic losses from extreme natural events during the last decades. These facts, thought to be triggered by environmental changes coupled with inefficient management and policies, highlight particularly exposed and vulnerable regions worldwide. Argentina faces several challenges associated with global environmental change and climate variability, especially related to water resources management including extreme floods and droughts. At the same time, the country's production capacity (i.e. natural resource-based commodities) and future development opportunities are closely tied to the sustainable development of its natural resource endowments. Given that vulnerability is registered not only by exposure to hazards (perturbations and stresses), but also resides in the sensitivity and resilience of the system experiencing such hazards, Argentina will need to improve its water management capacities to reduce its vulnerability to climate variability and change. This paper presents the basic components of the vulnerability analysis and suggests how it can be used to define efficient water management options.


2007 ◽  
Vol 55 (1-2) ◽  
pp. 339-347 ◽  
Author(s):  
J. Medellín-Azuara ◽  
L.G. Mendoza-Espinosa ◽  
J.R. Lund ◽  
R.J. Ramírez-Acosta

Mathematical optimisation is used to integrate and economically evaluate wastewater reuse, desalination and other water management options for water supply in Ensenada, Baja California Mexico with future levels of population and water demand. The optimisation model (CALVIN) is used to explore and integrate water management alternatives such as water markets, reuse and seawater desalination, within physical capacity constraints and the region's water availability, minimising the sum of economic costs of water scarcity and operating costs within a region. The modelling approach integrates economic inputs from agricultural and urban water demand models with infrastructure and hydrological information, to identify an economically optimal water allocation between water users in Ensenada. Estimates of agricultural and urban economic water demands for year 2020 were used. The optimisation results indicate that wastewater reclamation and reuse for the city of Ensenada is the most economically promising alternative option to meet future water needs and make water imports less attractive. Seawater desalination and other options are not economically viable alone, but may have some utility if combined with other options for the Ensenada region.


2018 ◽  
Author(s):  
Erin Towler ◽  
Heather Lazrus ◽  
Debasish PaiMazumder

Abstract. Drought is a function of both natural and human influences, but fully characterizing the interactions between human and natural influences on drought remains challenging. To better characterize parts of the drought feedback loop, this study combines hydrological and societal perspectives to characterize and quantify the potential for drought action. For the hydrological perspective, we examine historical groundwater data, from which we determine the decadal likelihoods of exceeding hydrologic thresholds relevant to different water uses. Stakeholder interviews yield data about how people rate the importance of water for different water uses. We combine these to quantify the Potential Drought Action Index (PDAI). The PDAI is demonstrated for a study site in south-central Oklahoma, where water availability is highly influenced by drought and management of water resources is contested by local stakeholders. For the hydrological perspective, we find that the historical decadal likelihood of exceedance for a moderate threshold associated with municipal supply has ranged widely: from 23 % to 75 %, which corresponds well with natural drought variability in the region. For the societal perspective, stakeholder interviews reveal that people value water differently for various uses. Combining this information into the PDAI illustrates that potential drought action increases as the hydrologic threshold is exceeded more often; this occurs as conditions get drier and when water use thresholds are more moderate. The PDAI also shows that for water uses where stakeholders have diverse views of importance, the PDAI will be diverse as well, and this is exacerbated under drier conditions. The variability in stakeholder views of importance is partially explained by stakeholders' cultural worldviews, pointing to some implications for managing water when drought risks threaten. We discuss how the results can be used to reduce potential disagreement among stakeholders and promote sustainable water management, which is particularly important for planning under increasing drought.


2013 ◽  
Vol 14 (3) ◽  
pp. 264-275

This effort discusses and evaluates alternative water management options to alleviate water stress and meet water needs in insular entities of the Aegean Archipelago, within the framework set by the principles of Integrated Water Resources Management (IWRM) and of the Water Framework Directive 2000/60/EC. Options are presented and assessed to determine integrated applicable strategies reflecting technical, economic, social and environmental constraints. The assessment is based on the application of the WaterStrategyMan Decision Support System (WSM DSS), developed under the Fifth Framework Programme, and is performed for six islands of the region. Results emphasize the need to understand the interconnections between social, technical, economic, and environmental problems in order to reach integrated solutions. In the dynamic context of current societies, pragmatic policy initiatives are needed to improve the means of preventing and addressing such issues, as well as new institutional structures to handle appropriately competing and conflicting water demands and development objectives.


2020 ◽  
Author(s):  
Nilo Lima ◽  
Hector Angarita ◽  
Marisa Escobar-Arias ◽  
Wilford Rincon ◽  
Sergio Nuñez ◽  
...  

<p>In Bolivia, since 2006 the Ministry of Environment and Water, through the National Watershed Plan, has developed the conceptual framework and national policy for Watershed Management. At present, this national policy is still in the process of learning and construction from its application in various river basins, principally through the development of Watershed Master Plans.</p><p>Three principles guide the development of this national planning effort: i. the recognition of the growing dependence on participatory processes as a forum to identify and enable legitimate water management and governance options, ii. the need to plan for an uncertain future caused by climate change and other societal prerogatives iii. the systemic analysis of the territory incorporating biophysical, sectoral and regional interactions.</p><p>Here we present results and lessons learned of this process in the formulation of the Master Plan of the Río Rocha Basin (PDCR); With a population of ~ 1,500,000 people (13% of Bolivia’s population), the basin has high levels of water scarcity that feed an intricate network of conflicts related to access, governance, and environmental degradation. The PDCR is a planning opportunity to enable the necessary conditions to resolve current conflicts and set the foundation of sustainable water management.</p><p>Robust decision support (RDS) has been adopted as a guiding framework, constructing a participatory process that considers uncertainties and strategies within an array of management options for the system. To accommodate the large disparities in water access across interests represented at different regions and scales of the Rio Rocha Basin, we implemented two innovations in the RDS process: first, a set of 24 quantitative indices that can operate at several nested scales of planning sub-units (i.e. from independent irrigation units or household water supply service areas, to the entire river basin), and second the use of an interactive “hard-coupled” decision dashboard to the Water Evaluation and Planning System (WEAP). In combination, this innovations enabled a diverse audience of actors to: i) explore the positive and negative interactions of water management, production systems, hazards and risks management, and ecosystem functions ii) identify disparities in the performance of a proposed plan between scales and ii) analyze and compare different management strategies interactively to improve outcomes and identify and mitigate emerging regional or sectorial conflicts.</p><p>As a result, the PDCR established a set of regional and intersectoral actions for 2025 and 2040, which integrate infrastructure, efficiency, pollution control, and territorial and productive planning actions, accompanied by institutional strengthening and capacity development measures. The plan expects to increase access and coverage of the demand for safe water, improve irrigation access, enable long term sustainable exploitation of groundwater and establish synergies with the existing sanitation plan to achieve additional improvements in the environmental quality of the Rio Rocha.</p>


Sign in / Sign up

Export Citation Format

Share Document