scholarly journals Effects of Climate Change and Flow Regulation on the Flow Characteristics of a Low-Relief River within Southern Boreal Climate Area

Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1827
Author(s):  
Elina Kasvi ◽  
Eliisa Lotsari ◽  
Miia Kumpumäki ◽  
Tanja Dubrovin ◽  
Noora Veijalainen

We investigated how hydro-climatological changes would affect fluvial forces and inundated area during a typical high-flow situation (MHQ, mean high discharge), and how adaptive regulation could attenuate the climate change impacts in a low-relief river of the Southern Boreal climate area. We used hydrologically modeled data as input for 2D hydraulic modeling. Our results show that, even though the MHQ will increase in the future (2050–2079), the erosional power of the flow will decrease on the study area. This can be attributed to the change of timing in floods from spring to autumn and winter, when the sea levels during flood peaks is higher, causing backwater effect. Even though the mean depth will not increase notably (from 1.14 m to 1.25 m) during MHQ, compared to the control period (1985–2014), the inundated area will expand by 15% due to the flat terrain. The increase in flooding may be restrained by adaptive regulations: strategies favoring ecologically sustainable and recreationally desirable lake water levels were modeled. The demands of environment, society, and hydropower are not necessarily contradictory in terms of climate change adaptation, and regulation could provide an adaptive practice in the areas of increased flooding.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Benjamin H. Strauss ◽  
Philip M. Orton ◽  
Klaus Bittermann ◽  
Maya K. Buchanan ◽  
Daniel M. Gilford ◽  
...  

AbstractIn 2012, Hurricane Sandy hit the East Coast of the United States, creating widespread coastal flooding and over $60 billion in reported economic damage. The potential influence of climate change on the storm itself has been debated, but sea level rise driven by anthropogenic climate change more clearly contributed to damages. To quantify this effect, here we simulate water levels and damage both as they occurred and as they would have occurred across a range of lower sea levels corresponding to different estimates of attributable sea level rise. We find that approximately $8.1B ($4.7B–$14.0B, 5th–95th percentiles) of Sandy’s damages are attributable to climate-mediated anthropogenic sea level rise, as is extension of the flood area to affect 71 (40–131) thousand additional people. The same general approach demonstrated here may be applied to impact assessments for other past and future coastal storms.


2021 ◽  
Vol 9 (6) ◽  
pp. 595
Author(s):  
Américo Soares Ribeiro ◽  
Carina Lurdes Lopes ◽  
Magda Catarina Sousa ◽  
Moncho Gomez-Gesteira ◽  
João Miguel Dias

Ports constitute a significant influence in the economic activity in coastal areas through operations and infrastructures to facilitate land and maritime transport of cargo. Ports are located in a multi-dimensional environment facing ocean and river hazards. Higher warming scenarios indicate Europe’s ports will be exposed to higher risk due to the increase in extreme sea levels (ESL), a combination of the mean sea level, tide, and storm surge. Located on the west Iberia Peninsula, the Aveiro Port is located in a coastal lagoon exposed to ocean and river flows, contributing to higher flood risk. This study aims to assess the flood extent for Aveiro Port for historical (1979–2005), near future (2026–2045), and far future (2081–2099) periods scenarios considering different return periods (10, 25, and 100-year) for the flood drivers, through numerical simulations of the ESL, wave regime, and riverine flows simultaneously. Spatial maps considering the flood extent and calculated area show that most of the port infrastructures' resilience to flooding is found under the historical period, with some marginal floods. Under climate change impacts, the port flood extent gradually increases for higher return periods, where most of the terminals are at high risk of being flooded for the far-future period, whose contribution is primarily due to mean sea-level rise and storm surges.


2013 ◽  
Vol 17 (1) ◽  
pp. 325-339 ◽  
Author(s):  
C. Schneider ◽  
C. L. R. Laizé ◽  
M. C. Acreman ◽  
M. Flörke

Abstract. Worldwide, flow regimes are being modified by various anthropogenic impacts and climate change induces an additional risk. Rising temperatures, declining snow cover and changing precipitation patterns will interact differently at different locations. Consequently, in distinct climate zones, unequal consequences can be expected in matters of water stress, flood risk, water quality, and food security. In particular, river ecosystems and their vital ecosystem services will be compromised as their species richness and composition have evolved over long time under natural flow conditions. This study aims at evaluating the exclusive impacts of climate change on river flow regimes in Europe. Various flow characteristics are taken into consideration and diverse dynamics are identified for each distinct climate zone in Europe. In order to simulate present-day natural flow regimes and future flow regimes under climate change, the global hydrology model WaterGAP3 is applied. All calculations for current and future conditions (2050s) are carried out on a 5' × 5' European grid. To address uncertainty, bias-corrected climate forcing data of three different global climate models are used to drive WaterGAP3. Finally, the hydrological alterations of different flow characteristics are quantified by the Indicators of Hydrological Alteration approach. Results of our analysis indicate that on the European scale, climate change can be expected to modify flow regimes remarkably. This is especially the case in the Mediterranean (due to drier conditions with reduced precipitation across the year) and in the boreal climate zone (due to reduced snowmelt, increased precipitation, and strong temperature rises). In the temperate climate zone, impacts increase from oceanic to continental. Regarding single flow characteristics, strongest impacts on timing were found for the boreal climate zone. This applies for both high and low flows. Flow magnitudes, in turn, will be predominantly altered in the Mediterranean but also in the Northern climates. At the end of this study, typical future flow regimes under climate change are illustrated for each climate zone.


2016 ◽  
Vol 4 (1) ◽  
pp. 92-101 ◽  
Author(s):  
Tony Birch

Australia, in common with nations globally, faces an immediate and future environmental and economic challenge as an outcome of climate change. Indigenous communities in Australia, some who live a precarious economic and social existence, are particularly vulnerable to climate change. Impacts are already being experienced through dramatic weather events such as floods and bushfires. Other, more gradual changes, such as rising sea levels in the north of Australia, will have long-term negative consequences on communities, including the possibility of forced relocation. Climate change is also a historical phenomenon, and Indigenous communities hold a depth of knowledge of climate change and its impact on local ecologies of benefit to the wider community when policies to deal with an increasingly warmer world are considered. Non-Indigenous society must respect this knowledge and facilitate alliances with Indigenous communities based on a greater recognition of traditional knowledge systems.


Author(s):  
Sharon Friel

This chapter explains the role of human activities in driving climate change, and some of its most significant impacts. It discusses justice issues raised by climate change, including causal responsibility, future development rights, the distribution of climate change harms, and intergenerational inequity. The chapter also provides a status update on current health inequities, noting the now recognized role of political, economic, commercial, and social factors in determining health. This section also discusses environmental epidemiology and the shift to eco-social approaches and eco-epidemiology, noting that while eco-epidemiologists have begun to research the influence of climate change on health, this research has not yet considered in depth the influence of social systems. The chapter concludes with an overview of how climate change exacerbates existing health inequities, focusing on the health implications of significant climate change impacts, including extreme weather events, rising sea levels, heat stress, vector-borne diseases, and food insecurity.


2019 ◽  
Vol 11 (8) ◽  
pp. 2450 ◽  
Author(s):  
Noora Veijalainen ◽  
Lauri Ahopelto ◽  
Mika Marttunen ◽  
Jaakko Jääskeläinen ◽  
Ritva Britschgi ◽  
...  

Severe droughts cause substantial damage to different socio-economic sectors, and even Finland, which has abundant water resources, is not immune to their impacts. To assess the implications of a severe drought in Finland, we carried out a national scale drought impact analysis. Firstly, we simulated water levels and discharges during the severe drought of 1939–1942 (the reference drought) in present-day Finland with a hydrological model. Secondly, we estimated how climate change would alter droughts. Thirdly, we assessed the impact of drought on key water use sectors, with a focus on hydropower and water supply. The results indicate that the long-lasting reference drought caused the discharges to decrease at most by 80% compared to the average annual minimum discharges. The water levels generally fell to the lowest levels in the largest lakes in Central and South-Eastern Finland. Climate change scenarios project on average a small decrease in the lowest water levels during droughts. Severe drought would have a significant impact on water-related sectors, reducing water supply and hydropower production. In this way drought is a risk multiplier for the water–energy–food security nexus. We suggest that the resilience to droughts could be improved with region-specific drought management plans and by including droughts in existing regional preparedness exercises.


2020 ◽  
Author(s):  
Sanne Muis ◽  
Maialen Irazoqui Apecechea ◽  
Job Dullaart ◽  
Joao de Lima Rego ◽  
Kristine S. Madsen ◽  
...  

<p>Climate change will lead to increases in the flood risk in low-lying coastal areas. Understanding the magnitude and impact of such changes is vital to design adaptive strategies and create awareness. In  the  context  of  the  CoDEC  project  (Coastal  Dataset  for  Evaluation  of  Climate  impact),  we  developed a consistent European dataset of extreme sea levels, including climatic changes from 1979 to 2100. To simulate extreme sea levels, we apply the Global Tide and Surge Model v3.0 (GTSMv3.0), a 2D hydrodynamic model with global coverage. GTSM has a coastal resolution of 2.5 km globally and 1.25 km in Europe, and incorporates dynamic interactions between sea-level  rise,  tides  and  storm surges. Validation of the dataset shows a good performance with a mean bias of 0-.04 m for the 1 in 10-year water levels. When analyzing changes in extreme sea levels for the future climate scenarios, it is projected that by the end of the century the 1 in 10-year water levels are likely to increase up to 0.5 m. This change is largely driven by the increase in mean sea levels, although locally changes in storms surge and interaction with tides can amplify the impacts of sea-level rise with changes up to 0.2 m in the 1 in 10-year water level.</p><p>The CoDEC dataset will be made accessible through a web portal on Copernicus Climate Data Store (C3S). The dataset includes a set of Climate Impact Indicators (CII’s) and new tools designed to evaluate the impacts of climate change on different sectors and industries. This data service will support European coastal sectors to adapt to changes in sea levels associated with climate change. In this presentation we will also demonstrate how the C3S coastal service can be used to enhance the understanding of local climate impacts.</p>


2015 ◽  
Vol 12 (3) ◽  
pp. 2657-2706 ◽  
Author(s):  
T. Olsson ◽  
J. Jakkila ◽  
N. Veijalainen ◽  
L. Backman ◽  
J. Kaurola ◽  
...  

Abstract. Assessment of climate change impacts on climate and hydrology on catchment scale requires reliable information about the average values and climate fluctuations of the past, present and future. Regional Climate Models (RCMs) used in impact studies often produce biased time series of meteorological variables. In this study bias correction of RCM temperature and precipitation for Finland is carried out using different versions of distribution based scaling (DBS) method. The DBS adjusted RCM data is used as input of a hydrological model to simulate changes in discharges in four study catchments in different parts of Finland. The annual mean discharges and seasonal variation simulated with the DBS adjusted temperature and precipitation data are sufficiently close to observed discharges in the control period (1961–2000) and produce more realistic projections for mean annual and seasonal changes in discharges than the uncorrected RCM data. Furthermore, with most scenarios the DBS method used preserves the temperature and precipitation trends of the uncorrected RCM data during 1961–2100. However, if the biases in the mean or the SD of the uncorrected temperatures are large, significant biases after DBS adjustment may remain or temperature trends may change, increasing the uncertainty of climate change projections. The DBS method influences especially the projected seasonal changes in discharges and the use of uncorrected data can produce unrealistic seasonal discharges and changes. The projected changes in annual mean discharges are moderate or small, but seasonal distribution of discharges will change significantly.


Sign in / Sign up

Export Citation Format

Share Document