scholarly journals Long-Term Trends and Seasonality Detection of the Observed Flow in Yangtze River Using Mann-Kendall and Sen’s Innovative Trend Method

Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1855 ◽  
Author(s):  
Ali ◽  
Kuriqi ◽  
Abubaker ◽  
Kisi

Trend analysis of streamflow provides practical information for better management of water resources on the eve of climate change. Thus, the objective of this study is to evaluate the presence of possible trends in the annual, seasonal, maximum, and minimum flow of Yangtze River at Cuntan and Zhutuo stations in China for the period 1980 to 2015. The assessment was carried out using the Mann–Kendall trend test, and the innovative trend analysis, while Sen’s slope is used to estimate the magnitude of the changes. The results of the study revealed that there were increasing and decreasing trends at Cuntan and Zhutuo stations in different months. The mean annual flow was found to decrease at a rate of −26.76 m3/s and −17.37 m3/s at both stations. The minimum flow was found to significantly increase at a rate of 30.57 m3/s and 16.37 m3/s, at a 95% level of confidence. Maximum annual flows showed an increasing trend in both regions of the Yangtze River. On the seasonal scale, the results showed that stations are more sensitive to seasonal flow variability suggesting a probable flooding aggravation. The winter season showed an increasing flow trend, while summer showed a decreasing trend. The spring flow was found to have an increasing trend by the Mann–Kendall test at both stations, but in the Zhutuo Station, a decreasing trend was found by way of the innovative trend analysis method. However, the autumn flow indicated a decreasing trend over the region by the Mann–Kendall (MK) test at both stations while it had an increasing trend in Cuntan by the innovative trend analysis method. The result showed nonstationary increasing and decreasing flow trends over the region. Innovative trend analysis method has the advantage of detecting the sub-trends in the flow time series because of its ability to present the results in graphical format. The results of the study indicate that decreasing trends may create water scarcity if proper adaptation measures are not taken.

Water ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 95
Author(s):  
Yilinuer Alifujiang ◽  
Jilili Abuduwaili ◽  
Yongxiao Ge

This study investigated the temporal patterns of annual and seasonal river runoff data at 13 hydrological stations in the Lake Issyk-Kul basin, Central Asia. The temporal trends were analyzed using the innovative trend analysis (ITA) method with significance testing. The ITA method results were compared with the Mann-Kendall (MK) trend test at a 95% confidence level. The comparison results revealed that the ITA method could effectively identify the trends detected by the MK trend test. Specifically, the MK test found that the time series percentage decreased from 46.15% in the north to 25.64% in the south, while the ITA method revealed a similar rate of decrease, from 39.2% to 29.4%. According to the temporal distribution of the MK test, significantly increasing (decreasing) trends were observed in 5 (0), 6 (2), 4 (3), 8 (0), and 8 (1) time series in annual, spring, summer, autumn, and winter river runoff data. At the same time, the ITA method detected significant trends in 7 (1), 9 (3), 6(3), 9 (3), and 8 (2) time series in the study area. As for the ITA method, the “peak” values of 24 time series (26.97%) exhibited increasing patterns, 25 time series (28.09%) displayed increasing patterns for “low” values, and 40 time series (44.94%) showed increasing patterns for “medium” values. According to the “low”, “medium”, and “peak” values, five time series (33.33%), seven time series (46.67%), and three time series (20%) manifested decreasing trends, respectively. These results detailed the patterns of annual and seasonal river runoff data series by evaluating “low”, “medium”, and “peak” values.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2129
Author(s):  
Ionuț Minea ◽  
Daniel Boicu ◽  
Oana-Elena Chelariu

The evolution of groundwater levels is difficult to predict over medium and long term in the context of global climate change. Innovative trend analysis method (ITA) was used to identify these trends, and ITA index was calculated to measure their magnitude. The data used are sourced from 71 hydrogeological wells that were dug between 1983 and 2018 and cover an area of over 8000 km2 developed in the temperate continental climate in the north-eastern part of Romania. The results obtained by applying the ITA show a general positive trend for groundwater level over 50% of wells for winter and spring seasons and annual values. The negative trends were observed for more than 43% of wells for the autumn season followed by the summer season (less than 40%). The magnitude of trends across the region shows a significant increase for spring season (0.742) followed by winter season (0.353). Important changes in the trends slopes and magnitudes have been identified for groundwater level depth between 0 and 4 m (for winter and spring seasons) and between 4 and 6 m (for summer and autumn seasons). The results can be implemented in groundwater resources management projects at local and regional level.


Atmosphere ◽  
2020 ◽  
Vol 11 (4) ◽  
pp. 332 ◽  
Author(s):  
Yilinuer Alifujiang ◽  
Jilili Abuduwaili ◽  
Balati Maihemuti ◽  
Bilal Emin ◽  
Michael Groll

The analysis of various characteristics and trends of precipitation is an essential task to improve the utilization of water resources. Lake Issyk-Kul basin is an upper alpine catchment, which is more susceptible to the effects of climate variability, and identifying rainfall variations has vital importance for water resource planning and management in the lake basin. The well-known approaches linear regression, Şen’s slope, Spearman’s rho, and Mann-Kendall trend tests are applied frequently to try to identify trend variations, especially in rainfall, in most literature around the world. Recently, a newly developed method of Şen-innovative trend analysis (ITA) provides some advantages of visual-graphical illustrations and the identification of trends, which is one of the main focuses in this article. This study obtained the monthly precipitation data (between 1951 and 2012) from three meteorological stations (Balykchy, Cholpon-Ata, and Kyzyl-Suu) surrounding the Lake Issyk-Kul, and investigated the trends of precipitation variability by applying the ITA method. For comparison purposes, the traditional Mann–Kendall trend test also used the same time series. The main results of this study include the following. (1) According to the Mann-Kendall trend test, the precipitation of all months at the Balykchy station showed a positive trend (except in January (Zc = −0.784) and July (Zc = 0.079)). At the Cholpon-Ata and Kyzyl-Suu stations, monthly precipitation (with the same month of multiple years averaged) indicated a decreasing trend in January, June, August, and November. At the monthly scale, significant increasing trends (Zc > Z0.10 = 1.645) were detected in February and October for three stations. (2) The ITA method indicated that the rising trends were seen in 16 out of 36 months at the three stations, while six months showed decreasing patterns for “high” monthly precipitation. According to the “low” monthly precipitations, 14 months had an increasing trend, and four months showed a decreasing trend. Through the application of the ITA method (January, March, and August at Balykchy; December at Cholpon-Ata; and July and December at Kyzyl-Suu), there were some significant increasing trends, but the Mann-Kendall test found no significant trends. The significant trend occupies 19.4% in the Mann-Kendall test and 36.1% in the ITA method, which indicates that the ITA method displays more positive significant trends than Mann–Kendall Zc. (3) Compared with the classical Mann-Kendall trend results, the ITA method has some advantages. This approach allows more detailed interpretations about trend detection, which has benefits for identifying hidden variation trends of precipitation and the graphical illustration of the trend variability of extreme events, such as “high” and “low” values of monthly precipitation. In contrast, these cannot be discovered by applying traditional methods.


2021 ◽  
Vol 8 (1) ◽  
pp. 41
Author(s):  
Bahtiyar Efe ◽  
Anthony R. Lupo

Atmospheric blocking plays an important role in modulating mid-latitude weather, in particular in the Northern Hemisphere (NH). Trend analysis of atmospheric blocking for both hemispheres by using Şen’s Innovative Trend Analysis (ITA) is performed in this study. The blocking data archived in the University of Missouri covers the period of 1968–2019 for the NH and 1970–2019 for the Southern Hemisphere is used in the study. Block occurrence, duration and blocking intensity (BI) is analysed by classifying the NH (and SH) into three groups according to the preferred blocking locations: Atlantic, Pacific and Continental (Atlantic, Pacific and Indian). In the NH, blocking intensity showed mixed results. It showed a decreasing trend for the entire hemisphere and Atlantic Region, whilst a different trend was shown for different BI clusters. For blocking numbers and duration, the entire hemisphere and regions showed increasing trends. These increasing trend values were also statistically significant. In the SH, blocking intensity showed a decreasing trend for low clusters, whilst medium and high cluster increased for the entire hemisphere. Block duration showed an increasing trend for the entire SH. Block numbers showed increasing trends, except for one point in the low cluster. Blocking characteristics showed different trends for different preferred blocking locations. Increasing trends of blocking numbers for the overall SH and Pacific region are statistically significant at 95% level. Increasing trends of blocking duration for the overall SH, Atlantic and Pacific region are statistically significant at 90%, 95% and 95% level, respectively.


Atmosphere ◽  
2018 ◽  
Vol 9 (9) ◽  
pp. 326 ◽  
Author(s):  
Mohammed Gedefaw ◽  
Denghua Yan ◽  
Hao Wang ◽  
Tianling Qin ◽  
Abel Girma ◽  
...  

This study investigated the annual and seasonal rainfall variability at five selected stations of Amhara Regional State, by using the innovative trend analysis method (ITAM), Mann-Kendall (MK) and Sen’s slope estimator test. The result showed that the trend of annual rainfall was increasing in Gondar (Z = 1.69), Motta (Z = 0.93), and Bahir Dar (Z = 0.07) stations. However, the trends in Dangla (Z = −0.37) and Adet (Z = −0.32) stations showed a decreasing trend. As far as monthly and seasonal variability of rainfall are concerned, all the stations exhibited sensitivity of change. The trend of rainfall in May, June, July, August, and September was increasing. However, the trend on the rest of other months showed a decreasing trend. The increase in rainfall during Kiremt season, along with the decrease in number of rainy days, leads to an increase of extreme rainfall events over the region during 1980–2016. The consistency in rainfall trends over the study region confirms the robustness of the change in trends. Innovative trend analysis method is very crucial method for detecting the trends in rainfall time series data due to its potential to present the results in graphical format as well. The findings of this paper could help researchers to understand the annual and seasonal variability of rainfall over the study region and become a foundation for further studies.


2016 ◽  
Vol 8 (3) ◽  
pp. 1152-1156 ◽  
Author(s):  
Pramiti Kumar Chakraborty ◽  
Lalu Das

Studying the variability of rainfall and its future projection during post-monsoon and winter season is important for providing the information to the farmers regarding crop planning. For evaluating rainfall scenario, long (1901-2005) and short term (1961-2005 and 1991-2005) rainfall data of nine selected IMD stations of South Bengalwas collected and subdivided into 30 year period up to 1990 and a 15 year period from 1991 to 2005. The data were subjected to trend analysis and available GCM data were compared with the observed rainfall data. The postmonsoon and winter rainfall changes during 1901-2005 were positive (except Krishnangar, -47.67 mm) and negative (except Alipore and Berhampur) respectively. During 1991-2005 all the stations recorded a positive change during post-monsoon, while reverse was true for winter. Among the different GCMs, INGV-ECHM4 estimated the postmonsoon rainfall at the best, whereas winter rainfall successfully estimated by MIROC-Hi. Future projection of both post-monsoon and winter rainfall over the region showed an increasing trend. This will help in policy formulation for water management in agriculture.


Sign in / Sign up

Export Citation Format

Share Document