scholarly journals Towards Sustainable River Management of the Dutch Rhine River

Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1827 ◽  
Author(s):  
Hendrik Havinga

Two thousand years of human interventions has heavily modified the Dutch Rhine river. Situated in a densely populated and developed delta, the river and its infrastructure fulfil important societal functions: safety against flooding, inland waterways, nature, freshwater supply, and agriculture. Programs to improve individual functions increasingly lead to conflicts with other functions and therefore call for an integrated approach. This paper reviews the history of the Dutch Rhine and documents the sectoral improvement programs in recent decades, explaining adverse effects such as the large-scale bed degradation at rates of up to 4 cm per year. The lessons from the past are used to propose avenues for future integrated and sustainable river training and river management, arguing that mitigating adverse effects while maintaining societal functions requires a combination of recurrent sediment management measures and extensive structural measures that may change the layout of the river system.

2012 ◽  
Vol 9 (12) ◽  
pp. 13537-13567 ◽  
Author(s):  
S. Vorogushyn ◽  
B. Merz

Abstract. The Rhine River catchment was heavily trained over the past decades and faced the construction of the Rhine weir cascade, flood protection dikes and detention basins. For the same time period, several studies detected positive trends in flood flows and faced the challenge of flood trend attribution, i.e. identifying the drivers of observed change. The presented study addresses the question about the responsible drivers for changes in annual maximum daily flows at Rhine gauges starting from Maxau down to Lobith. In particular, the role of river training measures including the Rhine weir cascade and a series of detention basins in enhancing Rhine floods was investigated. By applying homogenisation relationships to the original flow records in the period from 1952 till 2009, the annual maximum series were computed that would have been recorded had river training measures not been in place. Using multiple trend analysis, the relative changes in the homogenised time series were found to be smaller up to about 20% points compared to the original records. This effect is attributable to the river training measures and primarily to the construction of the Rhine weir cascade. The increase in Rhine flood discharges was partly caused by the unfavourable superposition of the Rhine and Neckar flood waves. It resulted from the acceleration of the Rhine waves due to construction of the weir cascade. However, at the same time, the tributary flows across the entire Upper and Lower Rhine, which enhance annual Rhine peaks, showed very strong positive trends. This suggests the dominance of a large-scale driver such as climate variability/change which acted along with river training. In particular, the analysis suggests that the river training measures fell in a period with increasing flood trends driven by factors other than river training of the Rhine main channel.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anna Kidová ◽  
Artur Radecki-Pawlik ◽  
Miloš Rusnák ◽  
Karol Plesiński

AbstractThe paper evaluates the impact of river training works designed to address problems associated with flooding on the braided-wandering Belá River in Slovakian Carpathians. This impact was investigated after the flood event in July 2018 on 11 river reaches where the river engineering and management intervention was applied. We analyzed its impact by spatio-temporal variations in river morphology (12 channel parameters) and changes in cross-section and hydraulic parameters (flow velocity, shear stress, stream power, W/D ratio) between pre- and post-flood management periods. The research hypotheses related to decreasing geodiversity in managed river reaches, a rapid increase in flow velocity during an extreme flood in river reaches where there is no sufficient floodplain inundation due to artificially high banks built by river training works, and increasing erosive force in the channel zone thanks to river management intervention were confirmed. The intervention in the braidplain area of the Belá River resulted in an undesirable simplification of the river pattern, loss of geomorphic diversity, loss of channel–floodplain connectivity, and disturbance and restraint of hydromorphological continuity. Identification of main conflicts of the Belá River management is important for clarifying the different approaches of stakeholders in the study area and aims to provide an objective illustration of their consequences. The presented analyses could help in future management issues as well as in the more critical decision-making process in vulnerable and rare braided river systems on the present when we are losing so many natural rivers by human decisions.


2021 ◽  
pp. 75-97
Author(s):  
Houkai Wei ◽  
Hongjian Su

AbstractFrom 1979 to 2018, Chinaunderwentrapid urbanisation and large-scale population migration. As a result, the permanent urban population increased by about 659 million, and the numbers of rural poor decreased by 754 million. However, as migration from rural to urban areas has increased, rural poverty has reduced while urban poverty is gradually increasing. The co-existence of both rural and urban poverty poses new challenges to development. In this chapter, we analyse the characteristics of China’sinternal migrationand urbanisation process. We draw on relevant data to describe in detail the changes that have occurred since China’s Reform and Opening-up, as well as China’s programme in reducing rural poverty and current trends in urban poverty. As the rate of urbanisation in China enters a new phase, there is a growing imperative to improve and promote an integrated approach to both urban and rural development. We also discuss the new raft of anti-poverty and poverty-management measures.


2014 ◽  
Vol 31 (2) ◽  
Author(s):  
Jose Antonio Moreira Lima

This paper is concerned with the planning, implementation and some results of the Oceanographic Modeling and Observation Network, named REMO, for Brazilian regional waters. Ocean forecasting has been an important scientific issue over the last decade due to studies related to climate change as well as applications related to short-range oceanic forecasts. The South Atlantic Ocean has a deficit of oceanographic measurements when compared to other ocean basins such as the North Atlantic Ocean and the North Pacific Ocean. It is a challenge to design an ocean forecasting system for a region with poor observational coverage of in-situ data. Fortunately, most ocean forecasting systems heavily rely on the assimilation of surface fields such as sea surface height anomaly (SSHA) or sea surface temperature (SST), acquired by environmental satellites, that can accurately provide information that constrain major surface current systems and their mesoscale activity. An integrated approach is proposed here in which the large scale circulation in the Atlantic Ocean is modeled in a first step, and gradually nested into higher resolution regional models that are able to resolve important processes such as the Brazil Current and associated mesoscale variability, continental shelf waves, local and remote wind forcing, and others. This article presents the overall strategy to develop the models using a network of Brazilian institutions and their related expertise along with international collaboration. This work has some similarity with goals of the international project Global Ocean Data Assimilation Experiment OceanView (GODAE OceanView).


Author(s):  
Jane J. Aggrey ◽  
Mirjam A. F. Ros-Tonen ◽  
Kwabena O. Asubonteng

AbstractArtisanal and small-scale mining (ASM) in sub-Saharan Africa creates considerable dynamics in rural landscapes. Many studies addressed the adverse effects of mining, but few studies use participatory spatial tools to assess the effects on land use. Hence, this paper takes an actor perspective to analyze how communities in a mixed farming-mining area in Ghana’s Eastern Region perceive the spatial dynamics of ASM and its effects on land for farming and food production from past (1986) to present (2018) and toward the future (2035). Participatory maps show how participants visualize the transformation of food-crop areas into small- and large-scale mining, tree crops, and settlement in all the communities between 1986 and 2018 and foresee these trends to continue in the future (2035). Participants also observe how a mosaic landscape shifts toward a segregated landscape, with simultaneous fragmentation of their farming land due to ASM. Further segregation is expected in the future, with attribution to the expansion of settlements being an unexpected outcome. Although participants expect adverse effects on the future availability of food-crop land, no firm conclusions can be drawn about the anticipated effect on food availability. The paper argues that, if responsibly applied and used to reveal community perspectives and concerns about landscape dynamics, participatory mapping can help raise awareness of the need for collective action and contribute to more inclusive landscape governance. These findings contribute to debates on the operationalization of integrated and inclusive landscape approaches and governance, particularly in areas with pervasive impacts of ASM.


BMC Ecology ◽  
2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Anna L. K. Nilsson ◽  
Thomas Skaugen ◽  
Trond Reitan ◽  
Jan Henning L’Abée-Lund ◽  
Marlène Gamelon ◽  
...  

Abstract Background Earlier breeding is one of the strongest responses to global change in birds and is a key factor determining reproductive success. In most studies of climate effects, the focus has been on large-scale environmental indices or temperature averaged over large geographical areas, neglecting that animals are affected by the local conditions in their home ranges. In riverine ecosystems, climate change is altering the flow regime, in addition to changes resulting from the increasing demand for renewable and clean hydropower. Together with increasing temperatures, this can lead to shifts in the time window available for successful breeding of birds associated with the riverine habitat. Here, we investigated specifically how the environmental conditions at the territory level influence timing of breeding in a passerine bird with an aquatic lifestyle, the white-throated dipper Cinclus cinclus. We relate daily river discharge and other important hydrological parameters, to a long-term dataset of breeding phenology (1978–2015) in a natural river system. Results Dippers bred earlier when winter river discharge and groundwater levels in the weeks prior to breeding were high, and when there was little snow in the catchment area. Breeding was also earlier at lower altitudes, although the effect dramatically declined over the period. This suggests that territories at higher altitudes had more open water in winter later in the study period, which permitted early breeding also here. Unexpectedly, the largest effect inducing earlier breeding time was territory river discharge during the winter months and not immediately prior to breeding. The territory river discharge also increased during the study period. Conclusions The observed earlier breeding can thus be interpreted as a response to climate change. Measuring environmental variation at the scale of the territory thus provides detailed information about the interactions between organisms and the abiotic environment.


2021 ◽  
Vol 11 (4) ◽  
pp. 1486
Author(s):  
Cuiping Kuang ◽  
Yuhua Zheng ◽  
Jie Gu ◽  
Qingping Zou ◽  
Xuejian Han

Groins are one of the popular manmade structures to modify the hydraulic flow and sediment response in river training. The spacing between groins is a critical consideration to balance the channel-depth and the cost of construction, which is generally determined by the backflow formed downstream from groins. A series of experiments were conducted using Particle Image Velocimetry (PIV) to observe the influence of groin spacing on the backflow pattern of two bilateral groins. The spacing between groins has significant effect on the behavior of the large-scale recirculation cell behind groins. The magnitude of the wake flow induced by a groin was similar to that induced by another groin on the other side, but the flow direction is opposite. The spanwise velocity near the groin tip dictates the recirculation zone width behind the groins due to the strong links between the spanwise velocity and the contraction ratio of channel cross-sections between groins. Based on previous studies and present experimental results, quantitative empirical relationships are proposed to calculate the recirculation zone length behind groins alternately placed at different spacing along riverbanks. This study provides better understanding and a robust formula to assess the backflow extent of alternate groins and identify the optimum groins array configuration.


2021 ◽  
Vol 22 ◽  
pp. 101542 ◽  
Author(s):  
Mathieu Nsenga Kumwimba ◽  
Xinzhu Li ◽  
Wei wang ◽  
L.H.D.K.U. De Silva ◽  
Linlin Bao ◽  
...  

Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1310
Author(s):  
Hajer Azaiez ◽  
Hakim Gabtni ◽  
Mourad Bédir

Electric resistivity sounding and tomography, as well as electromagnetic sounding, are the classical methods frequently used for hydrogeological studies. In this work, we propose the development and implementation of an original integrated approach using the unconventional hydro–geophysical methods of gravity and seismic reflection for the fast, large–scale characterization of hydrogeological potential using the Ain El Beidha plain (central Tunisia) as an analogue. Extending the values of vintage petroleum seismic reflection profiles and gravity data, in conjunction with available geological and hydrogeological information, we performed an advanced analysis to characterize the geometry of deep tertiary (Oligocene and Eocene) aquifers in this arid area. Residual and tilt angle gravity maps revealed that most gravity anomalies have a short wavelength. The study area was mainly composed of three major areas: the Oued Ben Zitoun and Ain El Beidha basins, which are both related to negative gravity trends corresponding to low–density subsiding depocenters. These basins are separated by an important NE–SW trend called “El Gonna–J. El Mguataa–Kroumet Zemla” gravity high. Evaluation of the superposition of detected lineaments and Euler deconvolution solutions’ maps showed several NE–SW and N–S relay system faults. The 3D density inversion model using a lateral and vertical cutting plane suggested the presence of two different tectonic styles (thin VS thick). Results from the gravity analysis were in concordance with the seismic analysis. The deep Oligocene and Eocene seismic horizons were calibrated to the hydraulic wells and surrounding outcrops. Oligocene and Eocene geological reservoirs appear very fractured and compartmented. The faulting network also plays an important role in enhancing groundwater recharge process of the Oligocene and Eocene aquifers. Finally, generated isochron maps provided an excellent opportunity to develop future comprehensive exploration surveys over smaller and more favorable areas’ sub–basins.


Water Policy ◽  
2016 ◽  
Vol 18 (4) ◽  
pp. 862-876
Author(s):  
Jianwei Liu ◽  
Limin Kou ◽  
Qiang Zhou

In order to alleviate the water supply–demand problem, a flood resource utilization strategy is proposed, called ‘Flood Utilization’. The strategy focuses on building large-scale water conservancy facilities and improving management measures. This paper presents the probability analysis of floodwater utilization in a confluence area, where a tributary joins a main river. Baicheng is used as the study area, where the Taoer River joins the Nenjiang River. After a large number of analyses, the main results and conclusions are as follows: First, the upper limit of available floodwater corresponds to the Taoer River's flood with a 5% probability of occurrence. Secondly, there are compensation characteristics between the two rivers which mean that the Nenjiang River can supply water to the Taoer River area. The analysis of monthly runoff, shows that there are compensation characteristics in 50.9% of the data period. The compensation rates (CRs) for the months from June to October are 0.2, 0.27, 0.25, 0.27, and 0.2, respectively. Thirdly, the differences in the runoff characteristics show that it is suitable for floodwater utilization. Finally, it is proposed that floodwater utilization measures are based on local conditions, such as the regional water storage characteristics and the runoff characteristics of the two rivers, and should be applied for different periods.


Sign in / Sign up

Export Citation Format

Share Document