scholarly journals Seasonal Variation of Rainy and Dry Season Per Capita Water Consumption in Freetown City Sierra Leone

Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 499
Author(s):  
Salmatta Ibrahim A ◽  
Fayyaz Ali Memon ◽  
David Butler

Ensuring a sustainable urban water supply for developing/low-income countries requires an understanding of the factors affecting water consumption and technical evidence of individual consumption which can be used to design an improved water demand projection. This paper compared dry and rainy season water sources available for consumption and the end-use volume by each person in the different income groups. The study used a questionnaire survey to gather household data for a total of 398 households, which was analysed to develop the relationship between per capita water consumption characteristics: Socio-economic status, demographics, water use behaviour around indoor and outdoor water use activities. In the per capita water consumption patterns of Freetown, a seasonal variation was found: In the rainy season, per capita water consumption was found to be about 7% higher than the consumption for the full sample, whilst in the dry season, per capita water consumption was almost 14% lower than the full survey. The statistical analysis of the data shows that the average per capita water consumption for both households increases with income for informal slum-, low-, middle- and high-income households without piped connection (73, 78, 94 and 112 L/capita/day) and with connection (91, 97, 113 and 133 L/capita/day), respectively. The collected data have been used to develop 20 statistical models using the multiple linear stepwise regression method for selecting the best predictor variable from the data set. It can be seen from the values that the strongest significant relationships of per capita consumption are with the number of occupants (R = −0.728) in the household and time spent to fetch water for use (R = −0.711). Furthermore, the results reveal that the highest fraction of end use is showering (18%), then bathing (16%), followed by toilet use (14%). This is not in agreement with many developing countries where toilet use represents the largest component of indoor end use.

Author(s):  
Patrick Ronoh ◽  
Claire Furlong ◽  
Frank Kansiime ◽  
Richard Mugambe ◽  
Damir Brdjanovic

Sanitation infrastructure are not able to cope with the increasing population in low-income countries, which leaves populations exposed to faecal contamination from multiple pathways. This study evaluated public health risk (using SaniPath) in a low-income community during the dry season, to identify the dominant exposure pathways, and compare this data to existing data for the rainy season, questioning the assumption that risk of faecal contamination is higher in the rainy season. SaniPath was used to collect and assess exposure and environmental data, and to generate risk profiles for each pathway. In the dry season the highest exposure frequency was for bathing and street food, exposure frequency generally increased, and seasonal variation was found in five pathways. The highest hazards in the dry season were through contact with drains, soil, and street food. Seasonal variation was found in the contamination of open drains and street food, with higher levels of Escherichia coli (E. coli) in the dry season. Open drains were identified as the most dominant risk pathway in both seasons, but risk was higher in the dry season. This highlights the complex nature of seasonal variation of faecal risk, and questions the assumption that risk is higher in the rainy season.


2008 ◽  
Vol 1 (1) ◽  
pp. 45-70 ◽  
Author(s):  
Y. Otaki ◽  
M. Otaki ◽  
P. Pengchai ◽  
Y. Ohta ◽  
T. Aramaki

Abstract. The direct measurement of the micro-components of water consumption (i.e., consumption by each residential activity, such as toilet, laundry, bath, and kitchen) both in the dry season and in the rainy season was conducted in Chiang Mai, Thailand. It was expected that rainfall differences between the dry and rainy season could influence awareness for water resources so that water consumption in the dry season may be smaller than that in the rainy season. It was also examined that whether the differences in water resources such as public waterworks or non-public waterworks like community waterworks, mountainous water and groundwater, affect the water use amount. A small-sized accumulative water meter was developed for measurement. This survey can provide the important information for water demand estimation and water supply planning in middle-developed countries where their water consumption should be expected to increase from here on.


2008 ◽  
Vol 1 (1) ◽  
pp. 17-25 ◽  
Author(s):  
Y. Otaki ◽  
M. Otaki ◽  
P. Pengchai ◽  
Y. Ohta ◽  
T. Aramaki

Abstract. The direct measurement of the micro-components of water consumption (i.e., consumption by each residential activity, such as toilet-, laundry-, bath-, and kitchen-use), both in the dry season and in the rainy season, was conducted in Chiang Mai, Thailand. It was expected that rainfall differences between the dry and rainy season would influence awareness for water resources so that water consumption in the dry season would be smaller than that in the rainy season. In addition, it was examined whether the differences in water resources such as public waterworks or non-public waterworks (i.e., community waterworks, mountainous water and groundwater), affected the amount of water use. A small-sized accumulative water meter was developed for measurement. This survey provides important information for water demand estimations and water supply planning in middle-developed countries where water consumption is expected to increase in future.


Water ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2620 ◽  
Author(s):  
Wenge Zhang ◽  
Xianzeng Du ◽  
Anqi Huang ◽  
Huijuan Yin

Proper water use requires its monitoring and evaluation. An indexes system of overall water use efficiency is constructed here that covers water consumption per 10,000 yuan GDP, the coefficient of effective utilization of irrigation water, the water consumption per 10,000 yuan of industrial value added, domestic water consumption per capita of residents, and the proportion of water function zone in key rivers and lakes complying with water-quality standards and is applied to 31 provinces in China. Efficiency is first evaluated by a projection pursuit cluster model. Multidimensional efficiency data are transformed into a low-dimensional subspace, and the accelerating genetic algorithm then optimizes the projection direction, which determines the overall efficiency index. The index reveals great variety in regional water use, with Tianjin, Beijing, Hebei, and Shandong showing highest efficiency. Shanxi, Liaoning, Shanghai, Zhejiang, Henan, Shanxi, and Gansu also use water with high efficiency. Medium efficiency occurs in Inner Mongolia, Jilin, Heilongjiang, Jiangsu, Hainan, Qinghai, Ningxia, and Low efficiency is found for Anhui, Fujian, Jiangxi, Hubei, Hunan, Guangdong, Guangxi, Chongqing, Sichuan, Guizhou, Yunnan, and Xinjiang. Tibet is the least efficient. The optimal projection direction is a* = (0.3533, 0.7014, 0.4538, 0.3315, 0.1217), and the degree of influence of agricultural irrigation efficiency, water consumption per industrial profit, water used per gross domestic product (GDP), domestic water consumption per capita of residents, and environmental water quality on the result has decreased in turn. This may aid decision making to improve overall water use efficiency across China.


2015 ◽  
Vol 71 (4) ◽  
pp. 529-537 ◽  
Author(s):  
R. C. Sarker ◽  
S. Gato-Trinidad

The process of developing an integrated water demand model integrating end uses of water has been presented. The model estimates and forecasts average daily water demand based on the end-use pattern and trend of residential water consumption, daily rainfall and temperature, water restrictions and water conservation programmes. The end-use model uses the latest end-use data set collected from Yarra Valley Water, Australia. A computer interface has also been developed using hypertext markup language and hypertext pre-processor. The developed model can be used by water authorities and water resource planners in forecasting water demand and by household owners in determining household water consumption.


2015 ◽  
Vol 15 (19) ◽  
pp. 11411-11432 ◽  
Author(s):  
G. Janssens-Maenhout ◽  
M. Crippa ◽  
D. Guizzardi ◽  
F. Dentener ◽  
M. Muntean ◽  
...  

Abstract. The mandate of the Task Force Hemispheric Transport of Air Pollution (TF HTAP) under the Convention on Long-Range Transboundary Air Pollution (CLRTAP) is to improve the scientific understanding of the intercontinental air pollution transport, to quantify impacts on human health, vegetation and climate, to identify emission mitigation options across the regions of the Northern Hemisphere, and to guide future policies on these aspects. The harmonization and improvement of regional emission inventories is imperative to obtain consolidated estimates on the formation of global-scale air pollution. An emissions data set has been constructed using regional emission grid maps (annual and monthly) for SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC and OC for the years 2008 and 2010, with the purpose of providing consistent information to global and regional scale modelling efforts. This compilation of different regional gridded inventories – including that of the Environmental Protection Agency (EPA) for USA, the EPA and Environment Canada (for Canada), the European Monitoring and Evaluation Programme (EMEP) and Netherlands Organisation for Applied Scientific Research (TNO) for Europe, and the Model Inter-comparison Study for Asia (MICS-Asia III) for China, India and other Asian countries – was gap-filled with the emission grid maps of the Emissions Database for Global Atmospheric Research (EDGARv4.3) for the rest of the world (mainly South America, Africa, Russia and Oceania). Emissions from seven main categories of human activities (power, industry, residential, agriculture, ground transport, aviation and shipping) were estimated and spatially distributed on a common grid of 0.1° × 0.1° longitude-latitude, to yield monthly, global, sector-specific grid maps for each substance and year. The HTAP_v2.2 air pollutant grid maps are considered to combine latest available regional information within a complete global data set. The disaggregation by sectors, high spatial and temporal resolution and detailed information on the data sources and references used will provide the user the required transparency. Because HTAP_v2.2 contains primarily official and/or widely used regional emission grid maps, it can be recommended as a global baseline emission inventory, which is regionally accepted as a reference and from which different scenarios assessing emission reduction policies at a global scale could start. An analysis of country-specific implied emission factors shows a large difference between industrialised countries and developing countries for acidifying gaseous air pollutant emissions (SO2 and NOx) from the energy and industry sectors. This is not observed for the particulate matter emissions (PM10, PM2.5), which show large differences between countries in the residential sector instead. The per capita emissions of all world countries, classified from low to high income, reveal an increase in level and in variation for gaseous acidifying pollutants, but not for aerosols. For aerosols, an opposite trend is apparent with higher per capita emissions of particulate matter for low income countries.


Author(s):  
Y. Yang

Abstract In the paper, Data Envelopment Analysis Tobit (DEA-Tobit) two-stage model was used to evaluate the efficiency of water-resource utilization, and regional differences and influencing factors water-resource utilization were analyzed. The results of the analysis of regional differences show that China's water-use efficiency is relatively low. Only Beijing, Shanghai, and Fujian have water-use efficiency higher than 0.8, whereas most other provinces and cities have an efficiency 0.3–0.8, there are regional differences in water-resource utilization efficiency in China, with the eastern region being higher than the central and western regions. The analysis of the influencing factors of regional differences in water-use efficiency found that per capita water resources, per capita domestic water use, and the proportion of primary and secondary industries all have a negative impact on the efficiency of water use, and per capita GDP has a positive impact on the efficiency of water use. Agricultural water consumption, industrial water consumption, domestic water consumption, and total ecological water consumption all have a negative impact on water-resource utilization efficiency, of which water consumption and industrial water consumption have a greater impact. Technological level and water-resource utilization efficiency have shown a significant positive correlation.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 851
Author(s):  
Jamilly N. Muniz ◽  
Klinger G. Duarte ◽  
Fábio H. Ramos Braga ◽  
Neuriane S. Lima ◽  
Darlan F. Silva ◽  
...  

Watersheds are defined as a set of lands where water drainage occurs through rivers and their tributaries. A large quantity of water resources exist in the state of Maranhão, Brazil, where rivers and their basins must meet environmental quality standards defined by the limits set out in national environmental council (CONAMA) legislation 357/05 for physicochemical and microbiological parameters, including parasites. Multivariate statistical techniques were applied to study the temporal and spatial variations in water quality of a segment of the Pindaré River. The data set included nine parameters for three sampling points over eleven months. Principal component analysis grouped the monitored sampling points into four clusters and identified electrical conductivity, temperature, total dissolved solids (TDS), pH, salinity, and Escherichia coli as being associated with the dry season and nitrite, nitrate, and turbidity as being associated with the rainy season. Three principal components explained 83.80% of the data variance during the rainy and dry seasons. The evaluated correlations indicated that during the rainy season, nitrite (~0.18 mg L−1) and turbidity (~46.00 NTU) levels were the highest, but pH was at its lowest (~6.61). During the dry season, TDS (~155.00 mg L−1) and pH (~8.10) were highest, and E. coli bacteria was more abundant.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 503
Author(s):  
Hui Li ◽  
Fen Zhao ◽  
Chunhui Li ◽  
Yujun Yi ◽  
Jiuhe Bu ◽  
...  

Economic development and increasing population density along the lower reaches of the Yellow river have challenged the river’s ability to meet human and ecological demand. The evaluation of the sustainability of water resources in the lower reaches of the Yellow River is of great significance for the achievement of high-quality development in the region. Based on an improved ecological footprint method considering soil water, the spatial and temporal evolution of the water resources ecological footprint and water resources carrying capacity and evaluates the utilization of water resources in the lower Yellow River are comprehensively evaluated. The results show that agricultural water consumption in the urban agglomerations in the lower reaches of the Yellow River occupies a major position in water consumption, accounting for more than 70%. In 2013–2017, the per capita water resources ecological footprint of the cities along the lower reaches of the Yellow River decreases every year, while the water resources carrying capacity is slightly fluctuating, but remains in a relatively stable state. The deficit situation has eased, falling by 54.52% in the past five years. The water use efficiency of the lower reaches of the Yellow River has increased every year, and the water resources conflict improved significantly, after the implementation of the new environmental policy in 2015. In terms of space, the cities with the smallest per capita ecological deficits include Zibo, Zhengzhou, and Laiwu City, and Dezhou, and Kaifeng and Binzhou City have the largest. Strict water resources management measures and water pollution prevention and control regulations should be formulated to improve the water use efficiency in these areas in order to solve the problem of water shortage.


2014 ◽  
Vol 14 (4) ◽  
pp. 561-568 ◽  
Author(s):  
C. D. Beal ◽  
A. Makki ◽  
R. A. Stewart

Rebounding water use behaviour has been observed in communities that have experienced plentiful water supply following a very dry period. However, the drivers of such rebounds in water consumption are varied and not well understood. Knowledge of such drivers can greatly assist managers towards proactive demand management, modelling and timely promotion of water efficient behaviours. Total and end-use residential water consumption has been tracked in South East Queensland, Australia for a sample of up to 252 homes in post-drought conditions (dam supplies growing but water restrictions continued, changed water use behaviours still ‘fresh’), and during and post-flooding conditions (eased restrictions, 100% dam capacity). Data on end-use water consumption trends using nearly 3 years of residential water end-use data have revealed several interesting patterns of consumption such as a delayed return to pre-drought use, the influence of climate and end-use specific rebounds (e.g. indoor versus outdoor use). The end-use data have helped to identify the drivers of rebounding water consumption which appear to include environmental cues (rainfall, temperature), social cues (e.g. government encouraging consumers to turn on tap) and a gradual general reduction in conservative water use behaviours. The paper concludes with a discussion of how this knowledge can be used to inform long-term demand management policy, particularly in variable climates.


Sign in / Sign up

Export Citation Format

Share Document