scholarly journals Evaluation of Element Mobility in River Sediment Using Different Single Extraction Procedures and Assessment of Probabilistic Ecological Risk

Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1411
Author(s):  
Sanja Sakan ◽  
Stanislav Frančišković-Bilinski ◽  
Dragana Đorđević ◽  
Aleksandar Popović ◽  
Nenad Sakan ◽  
...  

In this manuscript, samples of Kupa River sediments were examined using three different extraction agents. The aim of this study was to evaluate the applicability of single extraction procedures to investigate the bioavailability and mobility of major and trace elements (Al, As, Ba, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Na, Ni, P, Pb, S, Si, Sr, Ti, V, and Zn) from river sediment. Two forms of studied elements were evaluated: mobile, the most toxic element form (extraction with 1 M CH3COONH4 and 0.01 M CaCl2) and potentially mobilized form (2 M HNO3 extraction). The estimation of the ecological risk, with the application of the probability distribution of RI (potential ecological risk index) values, is yielded with the help of the Monte Carlo simulation (MCS). Ammonium acetate is proved to be a better extraction agent than calcium chloride. A positive correlation between the content of all extracted elements with nitric acid and the total element content indicates that 2 M HNO3 efficiently extracts all studied elements. Results showed anthropogenic sources of cadmium and copper and high barium mobility. The MCS suggests that risk of Cr, Cu, Ni, Pb, and Zn was low; As and Cd posed a lower and median ecological risk in the studied areas.

2020 ◽  
Author(s):  
K. Y. Lim ◽  
N. A. Zakaria ◽  
K. Y. Foo

Abstract The present work is aimed at assessing the aftermath effects of the 2014 flood tragedy on the distribution, pollution status and ecological risks of the heavy metals deposited in the surface river sediment. A series of environmental pollution indexes, specifically the enrichment factor (EF), geo-accumulation index (Igeo), contamination factor (CF), modified degree of contamination (mCd), pollution load index (PLI), potential ecological risk index (PERI) and sediment quality guidelines (SQGs) have been adopted. Results revealed that the freshly deposited sediments collected soon after the flood event were dominated by Cu, Fe, Pb, Ni, Zn, Cr and Cd, with the average concentrations of 38.74, 16,892, 17.71, 4.65, 29.22, 42.36 and 0.29 mg/kg, respectively. According to the heavy metal pollution indexes, Pahang River sediments were moderately to severely contaminated with Pb, Ni, Cu, Zn and Cr, while Cd with the highest risk of 91.09 was the predominant element that illustrated an aesthetic ecological risk to the water body after the tragic flood event. The findings highlighted a critical deterioration of the heavy metals content, driven by the catastrophic flood event, which has drastically altered their geochemical cycles, sedimentary pollution status and biochemical balance of the river's environment.


Author(s):  
Jamel Ayari ◽  
Maurizio Barbieri ◽  
Yannick Agnan ◽  
Ahmed Sellami ◽  
Ahmed Braham ◽  
...  

AbstractHigh-quality and accurate environmental investigations are essential for the evaluation of contamination and subsequent decision-making processes. A combination of environmental geochemical indices, multivariate analyses and geographic information system approach was successfully used to assess contamination status and source apportionment of trace elements (Ag, As, Cd, Cr, Cu, Hg, Ni, Pb, Sb, V and Zn) in surface stream sediments from the Oued Rarai basin in north-western Tunisia, containing various metal and metalloid ores. The contamination level reported in this study indicates a non-negligible potential ecological risk, mainly related to sediment transport along the river. Antimony (concentrations ranged from 0.02 to 297 mg kg−1 and Igeo > 5), arsenic (from 0.5 to 1490 mg kg−1 and Igeo > 5), lead (from 2.9 to 5150 mg kg−1 and Igeo > 5) mercury (from 0.05 to 54.4 mg kg−1 and Igeo > 5) and silver (from 0.05 to 9.4 mg kg−1 and Igeo > 5) showed the most crucial contamination. Besides, potential ecological risk index values were maximum for arsenic with a median of 302, indicating a very high to serious ecological risk (> 160). Results from correlation analysis and principal component analysis revealed three main geochemical associations related to lithologic, tectonic and anthropogenic sources. V, Cr and Cu mainly originated from natural bedrock and soil. Ag and Cd were more controlled by both natural and mining enrichments. Mercury and Pb were mostly influenced by the ancient ore-related activities at the Oued Rarai site and north-east–south-west trending faults. Finally, Sb, As, Ni and Zn were largely controlled by the siliciclastic continental Neogene sequences. Finally, the physical and chemical dynamics of the watershed system, lithological properties, mineralisation, tectonic settings and mobilisation of subsurface sediments largely controlled both concentrations and spatial patterns of trace elements in the study basin. These results need to be considered in the strategies of suitable environmental management at former and current mining sites in north-western Tunisia.


Water ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 431
Author(s):  
Liangliang Huang ◽  
Saeed Rad ◽  
Li Xu ◽  
Liangying Gui ◽  
Xiaohong Song ◽  
...  

This research has focused on the source identification, concentration, and ecological risk assessment of eight heavy metals in the largest karst wetland (Huixian) of south China. Numerous samples from superficial soil and sediment within ten representative landuse types were collected and examined, and the results were analyzed using multiple methods. Single pollution index (Pi) results were underpinned by the Geoaccumulation index (Igeo) method, in which Cd was observed as the priority pollutant with the highest contamination degree in this area. As for the most polluted landuse type, via applying Nemerow’s synthetical contamination index (PN) and Potential ecological risk index (RI), the river and rape field posed the highest ecological risks, while moderate for the rest. To quantify the drivers of the contaminants, a principal component analysis (PCA) was carried out and weathering of the watershed’s parent carbonate rocks was found to be the main possible origin, followed by anthropogenic sources induced by agricultural fertilizer. Considering the impacts of these potentially toxic elements on public health, the results of this study are essential to take preventive actions for environmental protection and sustainable development in the region.


2020 ◽  
Vol 8 (1) ◽  
pp. 89 ◽  
Author(s):  
Kalimur Rahman ◽  
Saurav Barua ◽  
Fahim Ahammad ◽  
Md. Akramul Alam

The Shitalakya River, located near Dhaka City of Bangladesh, supplies water to the city dwellers and hence it is essential to determine pollu-tion condition, ecological risk and sources of heavy metals in the river sediments. Sediment works as the sink and source of heavy metals in the riverine ecosystem. The samples collected from the ten sites of the Shitalakhya River were investigated in the study. Average concentra-tion of different heavy metals in the sediments are Cu>Zn>Ni>Pb>Cr>Cd. Geo-accumulation index reveals moderately pollute Cu concen-tration, unpolluted to moderately pollute Ni concentration and unpolluted for the rest of the heavy metals. The order of geo-accumulation index are Cu>Ni>Pb>Cd>Zn>Cr. Overall, the heavy metals render low potential ecological risk and the order of potential ecological risk index are Cd>Cu>Ni>Pb>Cr>Zn. Though the concentration of Cd is low in sediment, it poses higher ecological risk. Positive matrix factor-ization (PMF) identifies two sources of pollution, S1 and S2. Where, S1 consists with Cu, Ni, Pb, Zn; which come from industrial wastewater. S2 consists with Cr, Cd, Pb, Zn; which originate from natural sources. The outcomes of the study provide as a reference to plan, control and manage heavy metal pollution and protect the water source of the Shitalakhya River.    


2021 ◽  
Vol 5 (2) ◽  
pp. 18-27
Author(s):  
Hayder Issa ◽  
Azad Alshatteri

The current work accomplished a comprehensive evaluation of heavy metals pollution in soil of agricultural areas from Tanjaro sub-district, Sulaimaniyah province, Kurdistan Region, NE Iraq. Ninety soil samples were collected from thirty different locations. Concentrations of 16 heavy metals were measured by inductively coupled plasma optical emission spectrometry ICP-OES. The pollution index (PI), potential ecological risk index (Er), enrichment factor (EF), and ecological risk index (RI) were used to assess the pollution in soil samples. High levels of Li and Ni, and moderate Ba, Cd, Hg, and Pb according to the results of concentration analysis, pollution index (PI), and potential ecological risk (ERI). High levels of Cd and Hg according to the results of Er. Agglomerative hierarchical clustering (AHC) and principal component analysis (PCA) suggested that heavy metals were generated from different natural and anthropogenic sources like natural weathering, fertilizer application, and transportation. Origins of Hg, Cd, Ni, and Pb are probably from activities like overuse of pesticides and fertilizers, whereas Pb could be exhausted from vehicle exhausts as well. Furthermore, spatial distributions revealed nonpoint source pollution for the studied heavy metals. The obtained results help in the remediation techniques of contaminated soils such as dilution with decontaminated soil or extraction or separation of heavy metals.


2013 ◽  
Vol 726-731 ◽  
pp. 1809-1812
Author(s):  
Ji Cai Qiu

To find out the heavy metal pollution condition from the Beng River sediment, we see the region from Beng River Rubber Dam to the Yimeng Road Bridge as research object.We monitored and surveyed on the three kinds of metal components (Cu, Zn, Cd) in the sediments from eight sectionsthe. With reference to the relevant domestic standards, we established sediment pollution evaluation criteria suitable for the region., We conducted the evaluation of ecological risk and pollution levels with the detection results by standard index of the potential ecological risk index and Nemerow France France. The results showed that: the heavy metals ecological risk index in Sediment from Beng River Rubber Dam to the Yimeng Road bridge section, Nemerow pollution index was 6.95, It was heavily polluted. This showed that the heavy metals in river sediment pollution was very serious.


2021 ◽  
Author(s):  
Shengguang Yuan ◽  
wenqiang zhang ◽  
Wenye Li ◽  
Zhenhan Li ◽  
Minshan Wu ◽  
...  

Abstract Human activities cause heavy metals to enter the water body and consequently deposit in sediment with slow flow velocity, however little studies have explored the spatial distribution and ecological risk of heavy metals in sediments. The risk, spatial distribution and toxicity of heavy metals in sediment were investigated along the North Canal in the Beijing-Tianjin area. The study revealed that the mean concentrations of heavy metals in sediments exhibited a descending order of Zn > Cr > As > Cu > Pb > Ni > Co > Cd. The average geoaccumulation index (Igeo) value of Cd was highest and ranged from 0.2 to 2.91. Moreover, the greatest contamination of Cd (the Igeo values > 2) was observed in three sampling sites around the Tianjin City. The pollution load index (PLI) of all sampling points were greater than 1, which indicated the inflow of heavy metals originated from anthropogenic sources. The risk index (RI) values of three sampling points were greater than 300, which demonstreated high potential ecological risk. With regards to the toxicity assessment of combined heavy metals, there were two probable effect concentration (PEC) quotient (Qm-PEC) values greater than 0.5 which suggested potential toxicity to certain sediment-dwelling organisms. Identification of the possible sources and factors contributing to the content and spatial distribution of heavy metals could assist in improvement of the water quality, as well as support efficient management strategies to restoration of the environment.


Proceedings ◽  
2019 ◽  
Vol 44 (1) ◽  
pp. 1 ◽  
Author(s):  
Agnieszka Gruszecka-Kosowska

The aim of these investigations was to determine the impact of heavy metals bound with deposited particulate matter (PM) on contamination degree and related toxicological effects by calculating enrichment indices, namely, the geo-accumulation index (Igeo), contamination factor (CF), and enrichment factor (EF), as well as the ecological risk index (ERI) and modified hazard quotient (mHQ). Calculations were made based on the selected element concentrations determined in deposited PM samples in Krakow. The results of the investigations revealed that deposited PM was enriched in heavy metals. As Igeo provides information on the level of metal accumulation, it was found that deposited PM was practically uncontaminated with Be, Cd, and Tl (class 0) but heavily to extremely contaminated (class 5) with Co and Sn and extremely contaminated (class 6) with As, Ba, Cr, Cu, Li, Mn, Ni, Pb, Sr, Ti, V, and Zn. On the other hand, the calculated values of CF revealed very high contamination of deposited PM with Cd and Zn, considerable contamination with Sn, Pb, and As, and moderate contamination with Cu and Li. Values of calculated EF revealed that among the investigated elements, only Zn originated from anthropogenic sources. For Cd, a small influence of anthropogenic sources was observed. For Pb and Sn, non-crustal sources of emission were expected. The calculated ERI values indicated potential ecological risk levels that were very high for Cd and considerable for Zn, as well as low potential ecological risk for As, Co, Cr, Cu, Ni, Pb, and Tl. Moreover, the calculated mHQ values of severity of contamination were extreme for Zn, considerable for Cr, and moderate for As, Cu, and Pb. The analysis revealed that the impact of atmospheric and re-suspended PM on inhabitants constitutes a complex effect of a mixture of heavy metals simultaneously affecting human health.


2017 ◽  
Vol 76 (8) ◽  
pp. 2177-2187 ◽  
Author(s):  
Xu Wang ◽  
Lijun Ren ◽  
Fengchao Jiao ◽  
Wenjie Liu

The concentrations of eight heavy metals (Cr, Hg, As, Pb, Cd, Cu, Zn, Ni) in six river sediment samples were collected for evaluation of the degree of the heavy metals pollution distribution and ecological risk of three main rivers' sediments in Jinan. Multivariate statistical techniques were used to determine the most common pollution sources. The results illustrated that all of the metals in Damatou and Xinfengzhuang sections of the Xiaoqing River were much higher than the background value, and the level of potential ecological risk index was very high. The remaining four sections had a low or moderate degree of ecological risk. Principal component analysis (PCA) showed that all metals, with the exception of As, formed the first component explaining 86.85% of the total variance and industry sources could be considered as the first component, while As alone could be the second component, representing agricultural source. The elements Cr and Zn were grouped together while the remaining six metals formed a separate category. Among all heavy metals, Hg and Cd were the most significant contributors to the pollution. Therefore, the prevention of pollution should pay more attention to controlling the sources, especially Hg and Cd.


Minerals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 709
Author(s):  
Dmitriy Moskovchenko ◽  
Roman Pozhitkov ◽  
Aleksandr Zakharchenko ◽  
Aleksandr Tigeev

A study on the composition of snow allowed for a quantitative determination of pollutants deposited from the atmosphere. Concentrations of dissolved (<0.45 μm) and particulate fractions of 62 chemical elements were determined by ICP–MS and ICP–AES in 41 samples of snow from Tyumen (Russia). The background sites were characterized by a predominance of the dissolved phase of elements, except for Al, Sn, Cr, Co and Zr. The increased concentrations of dissolved Cd, Cu, Zn, Pb, Ni, As and Mo can be explained by a long-range atmospheric transport from the sources located in the Urals. The urban sites showed multiple increases in particulate depositions and a predominance of the particulate phase, with a high degree of enrichment in many heavy metals. Sources of trace elements were determined according to the enrichment factor (EF). Highly enriched elements (Pb, Sb, Cd, Ag, Mo, As, Zn and Cu) with an EF > 100 were emitted from anthropogenic sources. According to the potential ecological risk index (RI), the worst ecological conditions were identified in Tyumen’s historical center, industrial zone and along roads with the heaviest traffic. The data obtained in the present study allowed us to identify the most polluted parts of the city, which are located in the center and along the roads with the most intensive traffic. This research could offer a reference for the atmospheric pollution prevention and control in Tyumen.


Sign in / Sign up

Export Citation Format

Share Document