scholarly journals Urban Pluvial Flood Management Part 1: Implementing an AHP-TOPSIS Multi-Criteria Decision Analysis Method for Stakeholder Integration in Urban Climate and Stormwater Adaptation

Water ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 2422 ◽  
Author(s):  
Charles Axelsson ◽  
Silvio Giove ◽  
Stefano Soriani

Cities are facing increasing pressures to enact adaptation measures due to climate change. While blue-green infrastructure has emerged as a focal adaptation technique for stormwater management, in order to craft adaptation policies cities must consider a multitude of emerging, complex, and competing stakeholder interests around multiple adaptation alternatives. However, accounting for these different interests, analyzing their diverse priorities, and maintaining a transparent decision-making process is not easily achieved within the existing policy frameworks. Here we define and present a combined multi-criteria decision analysis (MCDA) of the analytic hierarchy process (AHP) and the technique for order of preference by similarity to ideal solution (TOPSIS) methods that easily integrates and quantifies stakeholder priorities while remaining accessible for non-experts engaged in the policy-making process. We demonstrate the method’s effectiveness through analyzing opinions about stormwater adaptation in New York City across several stakeholder groups. The method succeeds in integrating quantitative and qualitative judgements, indicating stakeholder preferential differences and allowing for more inclusive policy to be crafted. It can be extended beyond stormwater to many urban climate adaptation decisions facing multi-criteria considerations.

2021 ◽  
Author(s):  
Chahan M. Kropf ◽  
Alessio Ciullo ◽  
Simona Meiler ◽  
Laura Otth ◽  
Jamie W. McCaughey ◽  
...  

<p>Modelling societal, ecological, and economic costs of natural hazards in the context of climate change is subject to both strong aleatoric and ethical uncertainty. Dealing with these is challenging on several levels – from the identification and the quantification of the sources of uncertainty to their proper inclusion in the modelling, and the communication of these in a tangible way to both experts and non-experts. One particularly useful approach is global uncertainty and sensitivity analysis, which can help to quantify the confidence in the output values and identify the main drivers of the uncertainty while considering potential correlations in the model. Here we present applications of global uncertainty analysis, robustness quantification, and sensitivity analysis in natural hazard modelling using the new uncertainty module of the CLIMADA (CLIMate ADAptation) platform.</p><p>CLIMADA is a fully open-source Python program that implements a probabilistic multi-hazard global natural catastrophe damage model, which also calculates averted damage (benefit) thanks to adaptation measures of any kind (from grey to green infrastructure, behavioral, etc.). With the new uncertainty module, one can directly and comprehensively inspect the uncertainty and sensitivity to input variables of various output metrics, such as the spatial distribution of risk exceedance probabilities, or the benefit-cost ratios of different adaptation measures. This global approach does reveal interesting parameter interplays and might provide valuable input for decision-makers. For instance, a study of the geospatial distribution of sensitivity indices for tropical cyclones damage indicated that the main driver of uncertainty in dense regions (e.g. cities) is the impact function (vulnerability), whereas in sparse regions it is the exposure (asset) layer. </p><p>CLIMADA: https://github.com/CLIMADA-project/climada_python </p><p>(1) Aznar-Siguan, G. et al., GEOSCI MODEL DEV. 12, 7 (2019) 3085–97<br>(2) Bresch, D. N. and Aznar-Siguan., G.,  GEOSCI MODEL DEV. (2020), 1–20.</p>


2020 ◽  
Vol 117 (35) ◽  
pp. 21108-21117 ◽  
Author(s):  
Ashley Mark Broadbent ◽  
Eric Scott Krayenhoff ◽  
Matei Georgescu

We use a suite of decadal-length regional climate simulations to quantify potential changes in population-weighted heat and cold exposure in 47 US metropolitan regions during the 21st century. Our results show that population-weighted exposure to locally defined extreme heat (i.e., “population heat exposure”) would increase by a factor of 12.7–29.5 under a high-intensity greenhouse gas (GHG) emissions and urban development pathway. Additionally, end-of-century population cold exposure is projected to rise by a factor of 1.3–2.2, relative to start-of-century population cold exposure. We identify specific metropolitan regions in which population heat exposure would increase most markedly and characterize the relative significance of various drivers responsible for this increase. The largest absolute changes in population heat exposure during the 21st century are projected to occur in major US metropolitan regions like New York City (NY), Los Angeles (CA), Atlanta (GA), and Washington DC. The largest relative changes in population heat exposure (i.e., changes relative to start-of-century) are projected to occur in rapidly growing cities across the US Sunbelt, for example Orlando (FL), Austin (TX), Miami (FL), and Atlanta. The surge in population heat exposure across the Sunbelt is driven by concurrent GHG-induced warming and population growth which, in tandem, could strongly compound population heat exposure. Our simulations provide initial guidance to inform the prioritization of urban climate adaptation measures and policy.


2020 ◽  
Vol 12 (5) ◽  
pp. 1789 ◽  
Author(s):  
Tina-Simone Neset ◽  
Lotta Andersson ◽  
Ola Uhrqvist ◽  
Carlo Navarra

Serious gaming has gained increasing prominence in climate change communication, and provides opportunity to engage new audiences and new platforms for knowledge co-creation and dialogues. This paper presents the design and evaluation of a serious game on climate adaptation, primarily targeted towards high school students, practitioners and politicians. The game aims to provide an experience of the impact of climate adaptation measures, and illustrates links with selected Agenda 2030 goals, which the player has to consider, while limiting impacts of hazardous climate events. The game design builds on the key goals in Education for Sustainable Development combining comprehensive views, action competence, learner engagement and pluralism. This study draws on game sessions and surveys with high school students in Sweden, and aims to assess to what extent different aspects of the game can support an increased understanding of the needs and benefits of adaptation actions. The results of this study indicate that the game can engage players to reflect upon challenges related to climate adaptation decision making, but also point towards the challenge of including a high degree of complexity which can make it difficult to grasp consequences of individual measures, as well as to link these to the natural variability of the occurrence of extreme climatic events.


2018 ◽  
Vol 22 (11) ◽  
pp. 5657-5673 ◽  
Author(s):  
James O. Knighton ◽  
Osamu Tsuda ◽  
Rebecca Elliott ◽  
M. Todd Walter

Abstract. Recent developments in bottom-up vulnerability-based decision analysis frameworks present promising opportunities for flood practitioners to simplify complex decisions regarding risk mitigation and climate adaptation. This family of methodologies relies on strong social networks among flood practitioners and the public to support careful definition of stakeholder-relevant thresholds and vulnerabilities to hazards. In parallel, flood researchers are directly considering distinct atmospheric mechanisms that induce flooding to readily incorporate information on future climate projections. We perform a case study of flood professionals actively engaged in flood risk mitigation within Tompkins County, New York, USA, a community dealing with moderate flooding, to gage how much variance exists among professionals from the perspective of establishing a bottom-up flood mitigation study from an atmospheric perspective. Results of this case study indicate disagreement among flooding professionals as to which socioeconomic losses constitute a flood, disagreement on anticipated community needs, weak understanding of climate–weather–flood linkages, and some disagreement on community perceptions of climate adaptation. In aggregate, the knowledge base of the Tompkins County flood practitioners provides a well-defined picture of community vulnerability and perceptions. Our research supports the growing evidence that collaborative interdisciplinary flood mitigation work could reduce risk, and potentially better support the implementation of emerging bottom-up decision analysis frameworks for flood mitigation and climate adaptation.


Buildings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 205 ◽  
Author(s):  
Scharf ◽  
Kraus

The United Nations have identified climate change as the greatest threat to human life. As current research shows, urban areas are more vulnerable to climate change than rural areas. Numerous people are affected by climate change in their daily life, health and well-being. The need to react is undisputed and has led to numerous guidelines and directives for urban climate adaptation. Plants are commonly mentioned and recommended as one key to urban climate adaptation. Due to shading of open space and building surfaces, as well as evapotranspiration, plants reduce the energy load on the urban fabric and increase thermal comfort and climate resilience amongst many other ecosystem services. Plants, therefore, are described as green infrastructure (GI), because of the beneficial effects they provide. Extensive green roofs are often discussed regarding their impact on thermal comfort for pedestrians and physical properties of buildings. By means of Stadslab2050 project Elief Playhouse in Antwerp, Belgium, a single-story building in the courtyard of a perimeter block, the effects of different extensive green roof designs (A and B) on the microclimate, human comfort at ground and roof level, as well as building physics are analyzed and compared to the actual roofing (bitumen membrane) as the Status Quo variant. For the analyses and evaluation of the different designs the innovative Green Performance Assessment System (GREENPASS®) method has been chosen. The planning tool combines spatial and volumetric analyses with complex 3D microclimate simulations to calculate key performance indicators such as thermal comfort score, thermal storage score, thermal load score, run-off and carbon sequestration. Complementary maps and graphs are compiled. Overall, the chosen method allows to understand, compare and optimize project designs and performance. The results for the Elief Playhouse show that the implementation of green roofs serves a slight contribution to the urban energy balance but a huge impact on the building and humans. Variant B with entire greening performs better in all considered indicators, than the less greened design Variant A and the actual Status Quo. Variant B will probably bring a greater cost/benefit than Variant A and is thus recommended.


2020 ◽  
Vol 12 (21) ◽  
pp. 9115
Author(s):  
Jason Miklian ◽  
Kristian Hoelscher

Climate change amplifies social, political, economic, infrastructural and environmental challenges in many Global South cities, and perhaps no city is more vulnerable than Bangladesh’s capital of Dhaka. Climate-induced rural–urban migration is a profound concern, and Dhaka’s political leaders have embraced technology-based innovation as one solution pathway. This article explores the societal impact of Dhaka’s innovation environment strategies for climate change adaptation and mitigation. Employing a case study qualitative methodology, our three findings expand knowledge about innovation for urban climate adaptation and mitigation as understood by Dhaka-based entrepreneurs. First, the most effective innovations were not the most technologically advanced, but those with the highest degree of participant ownership. Second, gaps between recipient, corporate and governmental understandings of effective mitigation and adaptation harmed projects were driven by different definitions of risk and competing understandings of vulnerability. Third, even the most technical climate adaptation measures were inherently political in their application. We discuss how to better position urban climate innovation infrastructures in Bangladesh and beyond, including developing a better recognition of innovation lifecycles for urban climate adaptation and widening our definitions of “innovation” to better incorporate more effective and inclusive climate adaptation solutions.


Atmosphere ◽  
2019 ◽  
Vol 10 (5) ◽  
pp. 282 ◽  
Author(s):  
Yasuyo Makido ◽  
Dana Hellman ◽  
Vivek Shandas

Urban heat is a growing environmental concern in cities around the world. The urban heat island effect, combined with warming effects of climate change, is likely to cause an increase in the frequency and intensity of extreme heat events. Alterations to the physical, built environment are a viable option for mitigating urban heat, yet few studies provide systematic guidance to practitioners for adapting diverse land uses. In this study, we examine the use of green infrastructure treatments to evaluate changes in ambient temperatures across diverse land uses in the city of Portland, Oregon. We apply ENVI-met® microclimate modeling at the city-block scale specifically to determine what built environment characteristics are most associated with high temperatures, and the extent to which different physical designs reduce ambient temperature. The analysis included six green infrastructure interventions modeled across six different land-use types, and indicated the varying degrees to which approaches are effective. Results were inconsistent across landscapes, and showed that one mitigation solution alone would not significantly reduce extreme heat. These results can be used to develop targeted, climate- and landscape-specific cooling interventions for different land uses, which can help to inform and refine current guidance to achieve urban climate adaptation goals.


Sign in / Sign up

Export Citation Format

Share Document