scholarly journals Hydro-Morphological Assessment of Dittaino River, Eastern Sicily, Italy

Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2499
Author(s):  
Feliciana Licciardello ◽  
Salvatore Barbagallo ◽  
Salvatore M. Muratore ◽  
Attilio Toscano ◽  
Emanuela R. Giuffrida ◽  
...  

The present conditions of the Dittaino River were investigated by using tools addressing different components of the IDRAIM (stream hydro-morphological evaluation, analysis, and monitoring system) procedure. After the segmentation of the river, the Morphological Quality Index (MQI) and the Morphological Dynamic Index (MDI) were assessed to analyze its morphological quality and to classify the degree of channel dynamics related to progressive changes occurring in the relative long-term (i.e., 50–100 years), respectively. The results show that 45% and 22% of the analyzed reaches (mainly located in highest zones of the hydrographic network) were, respectively, of high and good quality. The MQI class decreased to good and then to moderate in the downstream direction, and two reaches were of poor class. The highest MDI classes were also mainly identified in the highest zones of the hydrographic network. Some limitations (i.e., the elevated number of indicators, as well as their simplification) and strengths (i.e., the easy applicability to a large number of reaches) were identified during the application of the MQI method to the Dittaino River.

Diabetes ◽  
2019 ◽  
Vol 68 (Supplement 1) ◽  
pp. 966-P
Author(s):  
ATSUSHI FUJIYA ◽  
TOSHIKI KIYOSE ◽  
TAIGA SHIBATA ◽  
HIROSHI SOBAJIMA

Electronics ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 986
Author(s):  
Hongru Li ◽  
Guiling Sun ◽  
Yue Li ◽  
Runzhuo Yang

The purpose of wearable technology is to use multimedia, sensors, and wireless communication to integrate specific technology into user clothes or accessories. With the help of various sensors, the physiological monitoring system can collect, process, and transmit physiological signals without causing damage. Wearable technology has been widely used in patient monitoring and people’s health management because of its low-load, mobile, and easy-to-use characteristics, and it supports long-term continuous work and can carry out wireless transmissions. In this paper, we established a Wi-Fi-based physiological monitoring system that can accurately measure heart rate, body surface temperature, and motion data and can quickly detect and alert the user about abnormal heart rates.


2019 ◽  
Vol 11 (6) ◽  
pp. 1716 ◽  
Author(s):  
Luciano Raso ◽  
Jan Kwakkel ◽  
Jos Timmermans

Climate change raises serious concerns for policymakers that want to ensure the success of long-term policies. To guarantee satisfactory decisions in the face of deep uncertainties, adaptive policy pathways might be used. Adaptive policy pathways are designed to take actions according to how the future will actually unfold. In adaptive pathways, a monitoring system collects the evidence required for activating the next adaptive action. This monitoring system is made of signposts and triggers. Signposts are indicators that track the performance of the pathway. When signposts reach pre-specified trigger values, the next action on the pathway is implemented. The effectiveness of the monitoring system is pivotal to the success of adaptive policy pathways, therefore the decision-makers would like to have sufficient confidence about the future capacity to adapt on time. “On time” means activating the next action on a pathway neither so early that it incurs unnecessary costs, nor so late that it incurs avoidable damages. In this paper, we show how mapping the relations between triggers and the probability of misclassification errors inform the level of confidence that a monitoring system for adaptive policy pathways can provide. Specifically, we present the “trigger-probability” mapping and the “trigger-consequences” mappings. The former mapping displays the interplay between trigger values for a given signpost and the level of confidence regarding whether change occurs and adaptation is needed. The latter mapping displays the interplay between trigger values for a given signpost and the consequences of misclassification errors for both adapting the policy or not. In a case study, we illustrate how these mappings can be used to test the effectiveness of a monitoring system, and how they can be integrated into the process of designing an adaptive policy.


2021 ◽  
Author(s):  
Ondřej Racek ◽  
Jan Blahůt ◽  
Filip Hartvich

Abstract. This article describes an innovative, complex and affordable monitoring system designed for joint observation of environmental parameters, rock block dilatations and temperature distribution inside the rock mass with a newly designed 3-meter borehole temperature sensor. Global radiation balance data are provided by pyranometers. The system introduces a novel approach for internal rock mass temperature measurement, which is crucial for the assessment of the changes in the stress field inside the rock slope influencing its stability. The innovative approach uses an almost identical monitoring system at different sites allowing easy setup, modularity and comparison of results. The components of the monitoring system are cheap, off-the-shelf and easy to replace. Using this newly designed system, we are currently monitoring three different sites, where the potential rock fall may endanger society assets below. The first results show differences between instrumented sites, although data time-series are relatively short. Temperature run inside the rock mass differs for each site significantly. This is very likely caused by different aspects of the rock slopes and different rock types. By further monitoring and data processing, using advanced modelling approaches, we expect to explain the differences among the sites, the influence of rock type, aspect and environmental variables on the long-term slope stability.


2007 ◽  
Vol 54 ◽  
pp. 1441-1445
Author(s):  
Masafumi MATSUYAMA ◽  
Takumi YOSHII ◽  
Kouki TSUBONO ◽  
Shin'ichi SAKAI ◽  
Akihide TADA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document