scholarly journals Increasing Hydrostatic Pressure Impacts the Prokaryotic Diversity during Emiliania huxleyi Aggregates Degradation

Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2616
Author(s):  
Christian Tamburini ◽  
Marc Garel ◽  
Aude Barani ◽  
Dominique Boeuf ◽  
Patricia Bonin ◽  
...  

In the dark ocean, the balance between the heterotrophic carbon demand and the supply of sinking carbon through the biological carbon pump remains poorly constrained. In situ tracking of the dynamics of microbial degradation processes occurring on the gravitational sinking particles is still challenging. Our particle sinking simulator system (PASS) intends to mimic as closely as possible the in situ variations in pressure and temperature experienced by gravitational sinking particles. Here, we used the PASS to simultaneously track geochemical and microbial changes that occurred during the sinking through the mesopelagic zone of laboratory-grown Emiliania huxleyi aggregates amended by a natural microbial community sampled at 105 m depth in the North Atlantic Ocean. The impact of pressure on the prokaryotic degradation of POC and dissolution of E. huxleyi-derived calcite was not marked compared to atmospheric pressure. In contrast, using global O2 consumption monitored in real-time inside the high-pressure bottles using planar optodes via a sapphire window, a reduction of respiration rate was recorded in surface-originated community assemblages under increasing pressure conditions. Moreover, using a 16S rRNA metabarcoding survey, we demonstrated a drastic difference in transcriptionally active prokaryotes associated with particles, incubated either at atmospheric pressure or under linearly increasing hydrostatic pressure conditions. The increase in hydrostatic pressure reduced both the phylogenetic diversity and the species richness. The incubation at atmospheric pressure, however, promoted an opportunistic community of “fast” degraders from the surface (Saccharospirillaceae, Hyphomonadaceae, and Pseudoalteromonadaceae), known to be associated with surface phytoplankton blooms. In contrast, the incubation under increasing pressure condition incubations revealed an increase in the particle colonizer families Flavobacteriaceae and Rhodobacteraceae, and also Colwelliaceae, which are known to be adapted to high hydrostatic pressure. Altogether, our results underline the need to perform biodegradation experiments of particles in conditions that mimic pressure and temperature encountered during their sinking along the water column to be ecologically relevant.

2020 ◽  
Author(s):  
Luca Centurioni ◽  
Verena Hormann

<p>Accurate estimates and forecasts of physical and biogeochemical processes at the air-sea interface must rely on integrated in-situ and satellite surface observations of essential Ocean/Climate Variables (EOVs /ECVs). Such observations, when sustained over appropriate temporal and spatial scales, are particularly powerful in constraining and improving the skills, impact and value of weather, ocean and climate forecast models. The calibration and validation of satellite ocean products also rely on in-situ observations, thus creating further positive high-impact applications of observing systems designed for global sustained observations of EOV and ECVs.</p><p>The Global Drifter Program has operated uninterrupted for several decades and constitutes a particular successful example of a network of multiparametric platforms providing observations of climate, weather and oceanographic relevance (e.g. air-pressure, sea surface temperature, ocean currents). This presentation will review the requirements of sustainability of an observing system such as the GDP (i.e. cost effectiveness, peer-review of the observing methodology and of the technology, free data access and international cooperation), will present some key metrics recently used to quantify the impact of drifter observations, and will discuss two prominent examples of GDP regional observations and the transition to operations of novel platforms, such us wind and directional wave spectra drifters, in sparsely sampled regions of the Arabian Sea and of the North Atlantic Ocean.</p>


2015 ◽  
Vol 15 (10) ◽  
pp. 14473-14504
Author(s):  
M. Gil-Ojeda ◽  
M. Navarro-Comas ◽  
L. Gómez-Martín ◽  
J. A. Adame ◽  
A. Saiz-Lopez ◽  
...  

Abstract. Three years of Multi-Axis Differential Optical Absorption Spectroscopy (MAXDOAS) measurements (2011–2013) have been used for estimating the NO2 mixing ratio along a horizontal line of sight from the high mountain Subtropical observatory of Izaña, at 2370 m a.s.l. (NDACC station, 28.3° N, 16.5° W). The method is based on horizontal path calculation from the O2–O2 collisional complex at the 477 nm absorption band which is measured simultaneously to the NO2, and is applicable under low aerosols loading conditions. The MAXDOAS technique, applied in horizontal mode in the free troposphere, minimizes the impact of the NO2 contamination resulting from the arrival of MBL airmasses from thermally forced upwelling breeze during central hours of the day. Comparisons with in-situ observations show that during most of measuring period the MAXDOAS is insensitive or very little sensitive to the upwelling breeze. Exceptions are found during pollution events under southern wind conditions. On these occasions, evidence of fast efficient and irreversible transport from the surface to the free troposphere is found. Background NO2 vmr, representative of the remote free troposphere, are in the range of 20–45 pptv. The observed seasonal evolution shows an annual wave where the peak is in phase with the solar radiation. Model simulations with the chemistry-climate CAM-Chem model are in good agreement with the NO2 measurements, and are used to further investigate the possible drivers of the NO2 seasonality observed at Izaña.


2021 ◽  
Author(s):  
Ilaria Stendardo ◽  
Bruno Buongiorno Nardelli ◽  
Sara Durante

<p>In the subpolar North Atlantic Ocean, Subpolar Mode Waters (SPMWs) are formed during late winter convection following the cyclonic circulation of the subpolar gyre. SPMWs participate in the upper flow of the Atlantic overturning circulation (AMOC) and provide much of the water that is eventually transformed into several components of the North Atlantic deep water (NADW), the cold, deep part of the AMOC. In a warming climate, an increase in upper ocean stratification is expected to lead to a reduced ventilation and a loss of oxygen. Thus, understanding how mode waters are affected by ventilation changes will help us to better understand the variability in the AMOC. In particular, we would like to address how the volume occupied by SPMWs has varied over the last decades due to ventilation changes, and what are the aspects driving the subpolar mode water formation, their interannual variations as well as the impact of the variability in the mixing and subduction and vertical dynamics on ocean deoxygenation. For this purpose, we use two observation-based 3D products from Copernicus Marine Service (CMEMS), the ARMOR3D and the OMEGA3D datasets. The first consists of 3D temperature and salinity fields, from the surface to 1500 m depth, available weekly over a regular grid at 1/4° horizontal resolution from 1993 to present. The second consists of observation-based quasi-geostrophic vertical and horizontal ocean currents with the same temporal and spatial resolution as ARMOR3D.</p>


2009 ◽  
Vol 5 (3) ◽  
pp. 471-480 ◽  
Author(s):  
Y.-X. Li ◽  
H. Renssen ◽  
A. P. Wiersma ◽  
T. E. Törnqvist

Abstract. The 8.2 ka event is the most prominent abrupt climate change in the Holocene and is often believed to result from catastrophic drainage of proglacial lakes Agassiz and Ojibway (LAO) that routed through the Hudson Bay and the Labrador Sea into the North Atlantic Ocean, and perturbed Atlantic meridional overturning circulation (MOC). One key assumption of this triggering mechanism is that the LAO freshwater drainage was dispersed over the Labrador Sea. Recent data, however, show no evidence of lowered δ18O values, indicative of low salinity, from the open Labrador Sea around 8.2 ka. Instead, negative δ18O anomalies are found close to the east coast of North America, extending as far south as Cape Hatteras, North Carolina, suggesting that the freshwater drainage may have been confined to a long stretch of continental shelf before fully mixing with North Atlantic Ocean water. Here we conduct a sensitivity study that examines the effects of a southerly drainage route on the 8.2 ka event with the ECBilt-CLIO-VECODE model. Hosing experiments of four routing scenarios, where freshwater was introduced to the Labrador Sea in the northerly route and to three different locations along the southerly route, were performed to investigate the routing effects on model responses. The modeling results show that a southerly drainage route is possible but generally yields reduced climatic consequences in comparison to those of a northerly route. This finding implies that more freshwater would be required for a southerly route than for a northerly route to produce the same climate anomaly. The implicated large amount of LAO drainage for a southerly routing scenario is in line with a recent geophysical modelling study of gravitational effects on sea-level change associated with the 8.2 ka event, which suggests that the volume of drainage might be larger than previously estimated.


2015 ◽  
Vol 28 (2) ◽  
pp. 819-837 ◽  
Author(s):  
Ole Johan Aarnes ◽  
Saleh Abdalla ◽  
Jean-Raymond Bidlot ◽  
Øyvind Breivik

Abstract Trends in marine wind speed and significant wave height are investigated using the global reanalysis ERA-Interim over the period 1979–2012, based on monthly-mean and monthly-maximum data. Besides the traditional reanalysis, the authors include trends obtained at different forecast range, available up to 10 days ahead. Any model biases that are corrected differently over time are likely to introduce spurious trends of variable magnitude. However, at increased forecast range the model tends to relax, being less affected by assimilation. Still, there is a trade-off between removing the impact of data assimilation at longer forecast range and getting a lower level of uncertainty in the predictions at shorter forecast range. Because of the sheer amount of assimilations made in ERA-Interim, directly and indirectly affecting the data, it is difficult, if not impossible, to distinguish effects imposed by all updates. Here, special emphasis is put on the introduction of wave altimeter data in August 1991, the only type of data directly affecting the wave field. From this, it is shown that areas of higher model bias introduce quite different trends depending on forecast range, most apparent in the North Atlantic and eastern tropical Pacific. Results are compared with 23 in situ measurements, Envisat altimeter winds, and two stand-alone ECMWF operational wave model (EC-WAM) runs with and without wave altimeter assimilation. Here, the 48-h forecast is suggested to be a better candidate for trend estimates of wave height, mainly due to the step change imposed by altimeter observations. Even though wind speed seems less affected by undesirable step changes, the authors believe that the 24–48-h forecast more effectively filters out any unwanted effects.


Ocean Science ◽  
2017 ◽  
Vol 13 (3) ◽  
pp. 379-410 ◽  
Author(s):  
Burkard Baschek ◽  
Friedhelm Schroeder ◽  
Holger Brix ◽  
Rolf Riethmüller ◽  
Thomas H. Badewien ◽  
...  

Abstract. The Coastal Observing System for Northern and Arctic Seas (COSYNA) was established in order to better understand the complex interdisciplinary processes of northern seas and the Arctic coasts in a changing environment. Particular focus is given to the German Bight in the North Sea as a prime example of a heavily used coastal area, and Svalbard as an example of an Arctic coast that is under strong pressure due to global change.The COSYNA automated observing and modelling system is designed to monitor real-time conditions and provide short-term forecasts, data, and data products to help assess the impact of anthropogenically induced change. Observations are carried out by combining satellite and radar remote sensing with various in situ platforms. Novel sensors, instruments, and algorithms are developed to further improve the understanding of the interdisciplinary interactions between physics, biogeochemistry, and the ecology of coastal seas. New modelling and data assimilation techniques are used to integrate observations and models in a quasi-operational system providing descriptions and forecasts of key hydrographic variables. Data and data products are publicly available free of charge and in real time. They are used by multiple interest groups in science, agencies, politics, industry, and the public.


2015 ◽  
Vol 29 (9) ◽  
pp. 1471-1494 ◽  
Author(s):  
James R. Collins ◽  
Bethanie R. Edwards ◽  
Kimberlee Thamatrakoln ◽  
Justin E. Ossolinski ◽  
Giacomo R. DiTullio ◽  
...  

2020 ◽  
Author(s):  
Evangelia Louropoulou ◽  
Martha Gledhill ◽  
Eric P. Achterberg ◽  
Thomas J. Browning ◽  
David J. Honey ◽  
...  

<p>Heme <em>b</em> is an iron-containing cofactor in hemoproteins that participates in the fundamental processes of photosynthesis and respiration in phytoplankton. Heme <em>b</em> concentrations typically decline in waters with low iron concentrations but due to lack of field data, the distribution of heme <em>b</em> in particulate material in the ocean is poorly constrained. Within the framework of the Helmholtz Research School for Ocean System Science and Technology (HOSST) and the GEOTRACES programme, the authors compiled datasets and conducted multidisciplinary research (e.g. chemical oceanography, microbiology, biogeochemical modelling) in order to test heme <em>b</em> as an indicator of <em>in situ</em> iron-limited phytoplankton. This study was initiated in the North Atlantic Ocean and expanded to the under-sampled South Atlantic Ocean for comparison of the results considering the different phytoplankton populations. Here, we report particulate heme <em>b</em> distributions across the Atlantic Ocean (59.9°N to 34.6°S). Heme <em>b</em> concentrations in surface waters ranged from 0.10 to 33.7 pmol L<sup>-1</sup> (median=1.47 pmol L<sup>-1</sup>, n=974) and were highest in regions with a high biomass. The ratio of heme <em>b</em> to particulate organic carbon (POC) exhibited a mean value of 0.44 μmol heme<em> b</em> mol<sup>-1 </sup>POC. We identified the ratio of 0.10 µmol heme <em>b</em> mol<sup>-1</sup> POC as the cut-off between heme <em>b</em> replete and heme <em>b</em> deficient phytoplankton. By this definition, the ratio heme <em>b</em> relative to POC was consistently below 0.10 μmol mol<sup>-1</sup> in areas characterized by low Fe supply; these were the Subtropical South Atlantic gyre and the seasonally iron limited Irminger Basin. Thus, the ratio heme <em>b</em> relative to POC gave a reliable indication of iron limited phytoplankton communities in situ. Furthermore, the comparison of observed and modelled heme <em>b</em> suggested that heme <em>b</em> could account for between 0.17-9.1% of biogenic iron. This range was comparable to previous culturing observations for species with low heme <em>b</em> content and species growing in low Fe (≤0.50 nmol L<sup>-1</sup>) or nitrate culturing media. Our large scale observations of heme<em> b</em> relative to organic matter suggest the impact of changes in iron supply on phytoplankton iron status.</p>


Sign in / Sign up

Export Citation Format

Share Document