scholarly journals Altitudinal Gradient Characteristics of Spatial and Temporal Variations of Snowpack in the Changbai Mountain and Their Response to Climate Change

Water ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 3580
Author(s):  
Yongming Chen ◽  
Zehua Chang ◽  
Shiguo Xu ◽  
Peng Qi ◽  
Xiaoyu Tang ◽  
...  

The variations in the snowpack in water towers of the world due to climate change have threatened the amount and timing of freshwater supplied downstream. However, it remains to be further investigated whether snowpack variation in water towers exhibits elevational heterogeneity at different altitude gradients and which climatic factors mainly influence these differences. Therefore, Changbai Mountain, a high-latitude water tower, was selected to analyze the changes in the snowpack by the methods of modified Mann–Kendall based on the daily meteorological data from the China Meteorological Data Service Centre. Meanwhile, the responses of snowpack change to climatic factors over recent decades were assessed and generalized using additive models. The results showed that the snow depth was greater in the higher altitude areas than in the lower elevation areas at different times. Areas with a snow depth of over 70 mm increased significantly in the 2010s. Increasing trends were shown at different altitudes from December to March of the next year during 1960~2018. However, a significant decreasing trend was shown in April, except for altitudes of 600–2378 m. The snow cover time at different altitudes showed a trend of first increasing and then decreasing during 1960~2018. The date of maximum snow depth appears to be more lagged as the altitude increases. In addition, the spring snowpack melted significantly faster in the 2010s than that in the 1960s. The snowpack variation in low-altitude regions is mainly influenced by ET and relative humidity. However, the mean temperature gradually became an important factor, affecting the snow depth variation with the increase in altitude. Therefore, the results of this study will be beneficial to the ecological protection and sustainable development of water towers.

2014 ◽  
Author(s):  
Peng Li ◽  
Jianhua Xu ◽  
Zhongsheng Chen ◽  
Benfu Zhao

Based on the hydrological and meteorological data of the upper reaches of Shiyang River basin in Northwest China from 1960 to 2009, this paper analyzed the change in runoff and its related climatic factors, and estimated the contribution of climate change and human activity to runoff change by using the moving T test, cumulative analysis of anomalies and multiple regression analysis. The results showed that temperature revealed a significant increasing trend, and potential evaporation capacity decreased significantly, while precipitation increased insignificantly in the past recent 50 years. Although there were three mutations in 1975, 1990 and 2002 respectively, runoff presented a slight decreasing trend in the whole period. The contributions of climate change and human activity to runoff change during the period of 1976-2009 were 45% and 55% respectively.


2021 ◽  
Vol 13 (6) ◽  
pp. 2875-2894
Author(s):  
Dhiraj Pradhananga ◽  
John W. Pomeroy ◽  
Caroline Aubry-Wake ◽  
D. Scott Munro ◽  
Joseph Shea ◽  
...  

Abstract. This paper presents hydrometeorological, glaciological and geospatial data from the Peyto Glacier Research Basin (PGRB) in the Canadian Rockies. Peyto Glacier has been of interest to glaciological and hydrological researchers since the 1960s, when it was chosen as one of five glacier basins in Canada for the study of mass and water balance during the International Hydrological Decade (IHD, 1965–1974). Intensive studies of the glacier and observations of the glacier mass balance continued after the IHD, when the initial seasonal meteorological stations were discontinued, then restarted as continuous stations in the late 1980s. The corresponding hydrometric observations were discontinued in 1977 and restarted in 2013. Datasets presented in this paper include high-resolution, co-registered digital elevation models (DEMs) derived from original air photos and lidar surveys; hourly off-glacier meteorological data recorded from 1987 to the present; precipitation data from the nearby Bow Summit weather station; and long-term hydrological and glaciological model forcing datasets derived from bias-corrected reanalysis products. These data are crucial for studying climate change and variability in the basin and understanding the hydrological responses of the basin to both glacier and climate change. The comprehensive dataset for the PGRB is a valuable and exceptionally long-standing testament to the impacts of climate change on the cryosphere in the high-mountain environment. The dataset is publicly available from Federated Research Data Repository at https://doi.org/10.20383/101.0259 (Pradhananga et al., 2020).


2016 ◽  
Author(s):  
Xiaoqing Peng ◽  
Oliver W. Frauenfeld ◽  
Tingjun Zhang ◽  
Kang Wang ◽  
Bin Cao ◽  
...  

Abstract. Abstract. The response of seasonal soil freeze depth to climate change has repercussions for the surface energy and water balance, ecosystems, the carbon cycle, and soil nutrient exchange. In this study, we use data from 845 meteorological stations to investigate the response of variations in soil freeze depth to climate change across China. Observations include daily air temperature, daily soil temperatures at various depths, mean monthly gridded air temperature, and Normalized Difference Vegetation Index. Results show that soil freeze depth decreased significantly at a rate of −0.18 cm/year, resulting in a net decrease of 8.05 cm over 1967–2012 across China. On the regional scale, soil freeze depth decreases varied between 0.0 and 0.4 cm/year in most parts of China from 1950 to 2009. Combining climatic and non-climatic factors with soil freeze depth, we conclude that air temperature increases are responsible for the decrease in soil seasonal freeze depth during this period. Changes in snow depth and vegetation are negatively correlated with soil freeze depth. These results are important for understanding the soil freeze/thaw dynamics and the impacts of soil freeze depth on ecosystem and hydrological process.


2020 ◽  
Author(s):  
Dhiraj Pradhananga ◽  
John W. Pomeroy ◽  
Caroline Aubry-Wake ◽  
D. Scott Munro ◽  
Joseph Shea ◽  
...  

Abstract. This paper presents hydrometeorological, glaciological and geospatial data of the Peyto Glacier Research Basin (PGRB) in the Canadian Rockies. Peyto Glacier has been of interest to glaciological and hydrological researchers since the 1960s, when it was chosen as one of five glacier basins in Canada for the study of mass and water balance during the International Hydrological Decade (IHD, 1965–1974). Intensive studies of the glacier and observations of the glacier mass balance continued after the IHD, when the initial seasonal meteorological stations were discontinued, then restarted as continuous stations in the late 1980s. The corresponding hydrometric observations were discontinued in 1977 and restarted in 2013. Data sets presented in this paper include: high resolution, co-registered DEMs derived from original air photos and LiDAR surveys; hourly off-glacier meteorological data recorded from 1987 to present; precipitation data from nearby Bow Summit; and long-term hydrological and glaciological model forcing datasets derived from bias-corrected reanalysis products. These data are crucial for studying climate change and variability in the basin, and to understanding the hydrological responses of the basin to both glacier and climate change. The comprehensive data set for the PGRB is a valuable and exceptionally long-standing testament to the impacts of climate change on the cryosphere in the high mountain environment. The dataset is publicly available from Federated Research Data Repository at https://doi.org/10.20383/101.0259 (Pradhananga et al., 2020).


2014 ◽  
Author(s):  
Peng Li ◽  
Jianhua Xu ◽  
Zhongsheng Chen ◽  
Benfu Zhao

Based on the hydrological and meteorological data of the upper reaches of Shiyang River basin in Northwest China from 1960 to 2009, this paper analyzed the change in runoff and its related climatic factors, and estimated the contribution of climate change and human activity to runoff change by using the moving T test, cumulative analysis of anomalies and multiple regression analysis. The results showed that temperature revealed a significant increasing trend, and potential evaporation capacity decreased significantly, while precipitation increased insignificantly in the past recent 50 years. Although there were three mutations in 1975, 1990 and 2002 respectively, runoff presented a slight decreasing trend in the whole period. The contributions of climate change and human activity to runoff change during the period of 1976-2009 were 45% and 55% respectively.


2020 ◽  
Author(s):  
Yahai Zhang ◽  
Aizhong Ye

<p>        Knowledge of the current severe global environmental changes, vegetation has faced the dual challenges posed by climate change and human activities. Quantitatively distinguishing the influence of climate change and human activities on vegetation changes is a key to develop adaptive ecological protection policies. This study used the Normalized Difference Vegetation Index (NDVI) and meteorological data from 1982 to 2015 to analyze the characteristic of vegetation changes and the relationship with climate factors in Mainland China. The contribution rates of climate change and human activities to vegetation dynamics are further calculated by the improved trend method of residual analysis. The results show that 68.81% vegetation of Mainland China is in a state of sustainable increase and cultivated vegetation (CV) and grass are the main greening vegetation types. The impact of human activities (54.45%-75.27%) on vegetation changes in Mainland China is higher than climate change (24.73%-45.46%). Human activities mainly affect grass, mixed coniferous broad-leaved forest (MCBF) and cultivated vegetation (CV), while swamp is more sensitive to climate change. The improved residual trend method considering temporal and spatial dimensions can reduce the uncertainty of the methods. This study provides a theoretical basis for future government implementation of ecological management.</p>


Agriculture ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 373
Author(s):  
Xiaoyue Wang ◽  
Xinghua Zhang ◽  
Mingxian Yang ◽  
Xiaonan Gou ◽  
Binbin Liu ◽  
...  

The Guanzhong region is a typical and important grain-producing area in China. The effect of accumulated temperature and rainfall on maize production is important in the face of global warming. Here, we collected meteorological data from six test sites in the Guanzhong region to study climate change from 1972 to 2018 in this area. A two-year study was conducted at multiple experimental sites to analyze the effect of climatic factors on maize yield and disease in the Guanzhong region. In the past 40 years, average temperatures have significantly increased at all sites, except for Hancheng. Rainfall varied significantly between years at each site, except for Huxian, with an overall declining trend. Accumulated temperature had a significant positive effect on yield (R2 = 0.28, p = 0.041 < 0.05), but rainfall did not affect yield (R2 = 0.0971, p = 0.324 > 0.05). During the growing period, total rainfall had a significant positive correlation with northern leaf blight disease in maize, and rainfall before silking had a significant positive correlation with ear length and row grain number. The demand for accumulated temperature by maize differed between sites. It is predicted that maize yield will increase with increasing temperature in the Guanzhong region. Greater attention should be paid to improve agronomic practices, such as adjustment of sowing dates, straw mulching, deep tillage, and pest control to adapt to future climate change.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Qinghua Tan ◽  
Yujie Liu ◽  
Liang Dai ◽  
Tao Pan

AbstractPhenology is an important indicator of global climate change. Revealing the spatiotemporal characteristics of crop phenology is vital for ameliorating the adverse effects of climate change and guiding regional agricultural production. This study evaluated the spatiotemporal variability of soybean’s phenological stages and key growth periods, and assessed their sensitivity to key climatic factors, utilizing a long-term dataset (1992–2018) of soybean phenology and associated meteorological data collected at 51 stations across China. The results showed that (1) during the soybean growing seasons from 1992 to 2018, the average temperature (0.34 ± 0.09 ℃ decade−1) and cumulative precipitation (6.66 ± 0.93 mm decade−1) increased, but cumulative sunshine hours (− 33.98 ± 1.05 h decade−1) decreased. (2) On a national scale, dates of sowing, emergence, trifoliate, anthesis, and podding of soybean were delayed, while the maturity date showed an advancing trend. The vegetative growth period (− 0.52 ± 0.24 days decade−1) and whole growth period (− 1.32 ± 0.30 days decade−1) of soybean were shortened, but the reproductive growth period (0.05 ± 0.26 days decade−1) was slightly extended. Trends in soybean phenological stages and key growth periods diverged in regions. Soybean phenological stages were delayed in Huang-Huai-Hai soybean zone, whereas advanced in southern soybean zone. Moreover, the key growth periods were greatly shortened in northern soybean zone. (3) In general, the sensitivity of soybean key growth periods to temperature was negative, whereas those to precipitation and sunshine hours differed among regions. In particular, most phenological stages were negatively sensitive to sunshine hours. Our results will provide scientific support for decision-making in agricultural production practices.


Author(s):  
J. R. McNeill

This chapter discusses the emergence of environmental history, which developed in the context of the environmental concerns that began in the 1960s with worries about local industrial pollution, but which has since evolved into a full-scale global crisis of climate change. Environmental history is ‘the history of the relationship between human societies and the rest of nature’. It includes three chief areas of inquiry: the study of material environmental history, political and policy-related environmental history, and a form of environmental history which concerns what humans have thought, believed, written, and more rarely, painted, sculpted, sung, or danced that deals with the relationship between society and nature. Since 1980, environmental history has come to flourish in many corners of the world, and scholars everywhere have found models, approaches, and perspectives rather different from those developed for the US context.


Sign in / Sign up

Export Citation Format

Share Document