Faculty Opinions recommendation of Senataxin Mutation Reveals How R-Loops Promote Transcription by Blocking DNA Methylation at Gene Promoters.

Author(s):  
Sandra Wolin ◽  
Marco Boccitto
2014 ◽  
Vol 34 (suppl_1) ◽  
Author(s):  
Jessilyn Dunn ◽  
Haiwei Qiu ◽  
Soyeon Kim ◽  
Daudi Jjingo ◽  
Ryan Hoffman ◽  
...  

Atherosclerosis preferentially occurs in arterial regions of disturbed blood flow (d-flow), which alters gene expression, endothelial function, and atherosclerosis. Here, we show that d-flow regulates genome-wide DNA methylation patterns in a DNA methyltransferase (DNMT)-dependent manner. We found that d-flow induced expression of DNMT1, but not DNMT3a or DNMT3b, in mouse arterial endothelium in vivo and in cultured endothelial cells by oscillatory shear (OS) compared to unidirectional laminar shear in vitro. The DNMT inhibitor 5-Aza-2’deoxycytidine (5Aza) or DNMT1 siRNA significantly reduced OS-induced endothelial inflammation. Moreover, 5Aza reduced lesion formation in two atherosclerosis models using ApoE-/- mice (western diet for 3 months and the partial carotid ligation model with western diet for 3 weeks). To identify the 5Aza mechanisms, we conducted two genome-wide studies: reduced representation bisulfite sequencing (RRBS) and transcript microarray using endothelial-enriched gDNA and RNA, respectively, obtained from the partially-ligated left common carotid artery (LCA exposed to d-flow) and the right contralateral control (RCA exposed to s-flow) of mice treated with 5Aza or vehicle. D-flow induced DNA hypermethylation in 421 gene promoters, which was significantly prevented by 5Aza in 335 genes. Systems biological analyses using the RRBS and the transcriptome data revealed 11 mechanosensitive genes whose promoters were hypermethylated by d-flow but rescued by 5Aza treatment. Of those, five genes contain hypermethylated cAMP-response-elements in their promoters, including the transcription factors HoxA5 and Klf3. Their methylation status could serve as a mechanosensitive master switch in endothelial gene expression. Our results demonstrate that d-flow controls epigenomic DNA methylation patterns in a DNMT-dependent manner, which in turn alters endothelial gene expression and induces atherosclerosis.


2021 ◽  
Author(s):  
Petros Georgopoulos ◽  
Maria Papaioannou ◽  
Soultana Markopoulou ◽  
Aikaterini Fragou ◽  
George Kouvatseas ◽  
...  

Abstract PurposeThe aim of this study was to explore the diagnostic potential of a panel of five hypermethylated gene promoters in bladder cancer. Individuals with primary BCa and control individuals matching the gender, age and smoking status of the cancer patients were recruited. DNA methylation was assessed for the gene promoters of RASSF1, RARβ, DAPK, hTERT and APC in urine samples collected by spontaneous urination. Fifty patients and 35 healthy controls were recruited, with average age of 70.26 years and average smoking status of 44.78 pack-years. In the BCa group, DNA methylation was detected in 27(61.4%) samples. RASSF1 was methylated in 52.2% of samples. Only 3(13.6%) samples from the control group were methylated, all in the RASSF1 gene promoter. The specificity and sensitivity of this panel of genes to diagnose BCa was 86% and 61% respectively. The RASSF1 gene could diagnose BCa with specificity 86.4% and sensitivity 52.3%. Promoter DNA methylation of this panel of five genes could be further investigated as urine biomarker for the diagnosis of BCa. The RASSF1 could be a single candidate biomarker for predicting BCa patients versus controls. Studies are required in order to develop a geographically adjusted diagnostic biomarker for BCa.Trial registration: ACTRN12620000258954


2013 ◽  
Author(s):  
Benjamin P. Berman ◽  
Yaping Liu ◽  
Theresa K. Kelly

Background: Nucleosome organization and DNA methylation are two mechanisms that are important for proper control of mammalian transcription, as well as epigenetic dysregulation associated with cancer. Whole-genome DNA methylation sequencing studies have found that methylation levels in the human genome show periodicities of approximately 190 bp, suggesting a genome-wide relationship between the two marks. A recent report (Chodavarapu et al., 2010) attributed this to higher methylation levels of DNA within nucleosomes. Here, we analyzed a number of published datasets and found a more compelling alternative explanation, namely that methylation levels are highest in linker regions between nucleosomes. Results: Reanalyzing the data from (Chodavarapu et al., 2010), we found that nucleosome-associated methylation could be strongly confounded by known sequence-related biases of the next-generation sequencing technologies. By accounting for these biases and using an unrelated nucleosome profiling technology, NOMe-seq, we found that genome-wide methylation was actually highest within linker regions occurring between nucleosomes in multi-nucleosome arrays. This effect was consistent among several methylation datasets generated independently using two unrelated methylation assays. Linker-associated methylation was most prominent within long Partially Methylated Domains (PMDs) and the positioned nucleosomes that flank CTCF binding sites. CTCF adjacent nucleosomes retained the correct positioning in regions completely devoid of CpG dinucleotides, suggesting that DNA methylation is not required for proper nucleosomes positioning. Conclusions: The biological mechanisms responsible for DNA methylation patterns outside of gene promoters remain poorly understood. We identified a significant genome-wide relationship between nucleosome organization and DNA methylation, which can be used to more accurately analyze and understand the epigenetic changes that accompany cancer and other diseases.


2018 ◽  
Vol 69 (3) ◽  
pp. 426-437.e7 ◽  
Author(s):  
Christopher Grunseich ◽  
Isabel X. Wang ◽  
Jason A. Watts ◽  
Joshua T. Burdick ◽  
Robert D. Guber ◽  
...  

2018 ◽  
Vol 127 (04) ◽  
pp. 226-233 ◽  
Author(s):  
Makrina Karaglani ◽  
Georgia Ragia ◽  
Maria Panagopoulou ◽  
Ioanna Balgkouranidou ◽  
Evangelia Nena ◽  
...  

AbstractSulfonylureas are insulin secretagogues which act in pancreatic β cells by blocking the KATP channels encoded by KCNJ11 and ABCC8 genes. In the present study, a pharmacoepigenetic approach was applied for the first time, investigating the correlation of KCNJ11 and ABCC8 gene promoter methylation with sulfonylureas-induced mild hypoglycemic events as well as the KCNJ11 E23K genotype. Sodium bisulfite-treated genomic DNA of 171 sulfonylureas treated T2DM patients previously genotyped for KCNJ11 E23K, including 88 that had experienced drug-associated hypoglycemia and 83 that had never experienced hypoglycemia, were analyzed for DNA methylation of KCNJ11 and ABCC8 gene promoters via quantitative Methylation-Specific PCR. KCNJ11 methylation was detected in 19/88 (21.6%) of hypoglycemic and in 23/83 (27.7%) of non-hypoglycemic patients (p=0.353), while ABCC8 methylation in 6/83 (7.2%) of non-hypoglycemic and none (0/88) of the hypoglycemic patients (p=0.012). Methylation in at least one promoter (KCNJ11 or ABCC8) was significantly associated with non-hypoglycemic patients who are carriers of KCNJ11 EK allele (p=0.030). Our data suggest that ABCC8 but not KCNJ11 methylation is associated to hypoglycemic events in sulfonylureas-treated T2DM patients. Furthermore, it is demonstrated that the KCNJ11 E23K polymorphism in association to either of the two genes’ DNA methylation may have protective role against sulfonylurea-induced hypoglycemia.


Toxics ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 56 ◽  
Author(s):  
Megan Culbreth ◽  
Michael Aschner

Methylmercury (MeHg) has conventionally been investigated for effects on nervous system development. As such, epigenetic modifications have become an attractive mechanistic target, and research on MeHg and epigenetics has rapidly expanded in the past decade. Although, these inquiries are a recent advance in the field, much has been learned in regards to MeHg-induced epigenetic modifications, particularly in the brain. In vitro and in vivo controlled exposure studies illustrate that MeHg effects microRNA (miRNA) expression, histone modifications, and DNA methylation both globally and at individual genes. Moreover, some effects are transgenerationally inherited, as organisms not directly exposed to MeHg exhibited biological and behavioral alterations. miRNA expression generally appears to be downregulated consequent to exposure. Further, global histone acetylation also seems to be reduced, persist at distinct gene promoters, and is contemporaneous with enhanced histone methylation. Moreover, global DNA methylation appears to decrease in brain-derived tissues, but not in the liver; however, selected individual genes in the brain are hypermethylated. Human epidemiological studies have also identified hypo- or hypermethylated individual genes, which correlated with MeHg exposure in distinct populations. Intriguingly, several observed epigenetic modifications can be correlated with known mechanisms of MeHg toxicity. Despite this knowledge, however, the functional consequences of these modifications are not entirely evident. Additional research will be necessary to fully comprehend MeHg-induced epigenetic modifications and the impact on the toxic response.


2019 ◽  
Vol 5 (12) ◽  
pp. eaay7246 ◽  
Author(s):  
Zhiyuan Chen ◽  
Qiangzong Yin ◽  
Azusa Inoue ◽  
Chunxia Zhang ◽  
Yi Zhang

Faithful maintenance of genomic imprinting is essential for mammalian development. While germline DNA methylation–dependent (canonical) imprinting is relatively stable during development, the recently found oocyte-derived H3K27me3-mediated noncanonical imprinting is mostly transient in early embryos, with some genes important for placental development maintaining imprinted expression in the extraembryonic lineage. How these noncanonical imprinted genes maintain their extraembryonic-specific imprinting is unknown. Here, we report that maintenance of noncanonical imprinting requires maternal allele–specific de novo DNA methylation [i.e., somatic differentially methylated regions (DMRs)] at implantation. The somatic DMRs are located at the gene promoters, with paternal allele–specific H3K4me3 established during preimplantation development. Genetic manipulation revealed that both maternal EED and zygotic DNMT3A/3B are required for establishing somatic DMRs and maintaining noncanonical imprinting. Thus, our study not only reveals the mechanism underlying noncanonical imprinting maintenance but also sheds light on how histone modifications in oocytes may shape somatic DMRs in postimplantation embryos.


2005 ◽  
Vol 124 (3) ◽  
pp. 430-439 ◽  
Author(s):  
Juyuan Guo ◽  
Matthias Burger ◽  
Inko Nimmrich ◽  
Sabine Maier ◽  
Evelyne Becker ◽  
...  

2007 ◽  
Vol 67 (18) ◽  
pp. 8511-8518 ◽  
Author(s):  
Kristen H. Taylor ◽  
Robin S. Kramer ◽  
J. Wade Davis ◽  
Juyuan Guo ◽  
Deiter J. Duff ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document