scholarly journals Estabilização de Talude Rochoso: Estudo de Caso do Método de Utilização da Tela de Alta Resistencia Hexagonal / Rock Slope Stabilization: Case Study of the Hexagonal High-Strength Screen Method

2021 ◽  
Vol 7 (11) ◽  
pp. 106565-106477
Author(s):  
Thiago Felipe Ferreira ◽  
José Branham Ribeiro De Lima ◽  
Bruno Canuto de Souza Alves ◽  
Priscila da Cunha Luz Barcellos ◽  
Júlio César Da Silva ◽  
...  
Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2589
Author(s):  
Jung J. Kim

This study presents an explosion-resistant hybrid system containing a steel slab and a carbon fiber-reinforced polymer (CFRP) frame. CFRP, which is a high-strength material, acts as an impact reflection part. Steel slab, which is a high-ductility material, plays a role as an impact energy absorption part. Based on the elastoplastic behavior of steel, a numerical model is proposed to simulate the dynamic responses of the hybrid system under the air pressure from an explosion. Based on this, a case study is conducted to analyze and identify the optimal design of the proposed hybrid system, which is subjected to an impact load condition. The observations from the case study show the optimal thicknesses of 8.2 and 7 mm for a steel slab and a ϕ100 mm CFRP pipe for the hybrid system, respectively. In addition, the ability of the proposed hybrid system to resist an uncertain explosion is demonstrated in the case study based on the reliability methodology.


2021 ◽  
Vol 11 (16) ◽  
pp. 7176
Author(s):  
Guillermo Cobos ◽  
Miguel Ángel Eguibar ◽  
Francisco Javier Torrijo ◽  
Julio Garzón-Roca

This case study presents the engineering approach conducted for stabilizing a landslide that occurred at “El Portalet” Pass in the Central Spanish Pyrenees activated due to the construction of a parking lot. Unlike common slope stabilization cases, measures projected here were aimed at slowing and controlling the landslide, and not completely stopping the movement. This decision was taken due to the slow movement of the landslide and the large unstable mass involved. The degree of success of the stabilization measures was assessed by stability analyses and data obtained from different geotechnical investigations and satellite survey techniques such as GB-SAR and DinSAR conducted by different authors in the area under study. The water table was found to be a critical factor in the landslide’s stability, and the tendency of the unstable slope for null movement (total stability) was related to the water table lowering process, which needs more than 10 years to occur due to regional and climatic issues. Results showed a good performance of the stabilization measures to control the landslide, demonstrating the effectiveness of the approach followed, and which became an example of a good response to the classical engineering duality cost–safety.


2021 ◽  
Author(s):  
Anthony Muff ◽  
Anders Wormsen ◽  
Torfinn Hørte ◽  
Arne Fjeldstad ◽  
Per Osen ◽  
...  

Abstract Guidance for determining a S-N based fatigue capacity (safe life design) for preloaded connectors is included in Section 5.4 of the 2019 edition of DNVGL-RP-C203 (C203-2019). This section includes guidance on the finite element model representation, finite element based fatigue analysis and determination of the connector design fatigue capacity by use of one of the following methods: Method 1 by FEA based fatigue analysis, Method 2 by FEA based fatigue analysis and experimental testing and Method 3 by full-scale connector fatigue testing. The FEA based fatigue analysis makes use of Appendix D.2 in C203-2019 (“S-N curves for high strength steel applications for subsea”). Practical use of Section 5.4 is illustrated with a case study of a fatigue tested wellhead profile connector segment test. Further developments of Section 5.4 of C203-2019 are proposed. This included acceptance criteria for use of a segment test to validate the FEA based fatigue analysis of a full-scale preloaded connector.


2021 ◽  
Author(s):  
Heena Noh ◽  
Kijung Park ◽  
Kiwon Park ◽  
Gül E. Okudan Kremer

Abstract Traditional plaster casts often cause dermatitis due to disadvantages in usability and wearability. Additive manufacturing (AM) can fabricate customized casts to have light-weight, high strength, and better air permeability. Although existing studies have provided design for additive manufacturing (DfAM) guidelines to facilitate design applications for AM, most relevant studies focused on the mechanical properties of outputs and too general/specific design guidelines; novice designers may still have difficulty understanding trade-offs between functional and operational performance of various DfAM aspects for medical casts. As a response, this study proposes a DfAM worksheet for medical casts to effectively guide novice designers. First, important DfAM criteria and their possible solutions for medical casts are examined through a literature review to construct a basic DfAM framework for medical casts. Next, a scoring system that considers relative criteria importance and criteria evaluation from both functional and operational perspectives is developed to identify the overall suitability of a medical cast design for AM. A case study of finger cast designs was performed to identify the DfAM performance of the sample designs along with redesign requirements suggested by the worksheet. The proposed worksheet would be used to achieve rapid medical cast design by objectively assessing its suitability for AM.


2021 ◽  
Vol 56 (5) ◽  
pp. 340-350
Author(s):  
Ngoc Binh Vu ◽  
Truong Thanh Phi ◽  
Thanh Cong Nguyen ◽  
Hong Thinh Phi ◽  
Quy Nhan Pham ◽  
...  

The research aimed to study 24 rock slope surfaces along the road around Hon Lon Island, Kien Hai district, Kien Giang province, Vietnam. The analytical results have determined slope failure, wedge failure, and toppling, which occurred on almost slope surface and the average percentage of plane failure is the largest. The average percent of plane failure is 19.23%, the wedge failure is 15.35%, and the toppling fault is 6.73%. Besides, the analytical results have also identified the slope surfaces which can be the key blocks: ND-13, 18, 23, 25, 34, 37, 45, 51, 62, 63. The other analytical results show that the existence of key blocks at the rock slope surfaces in the N-S direction, dip to E at the survey locations: ND-13, 23, 63 and dip to W at the survey locations: ND-37, 45; in the NE-SW direction, dip to SE at the survey locations: ND-15, 62 and dip to NW at the survey locations: ND-18, 34; in the NW-SE direction, dip to SW at the survey location ND-51. These results have important significance to support for protecting slope surface safety.


Sign in / Sign up

Export Citation Format

Share Document