scholarly journals Ultrathin Hematite Photoanode with Gradient Ti Doping

Research ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Pengfei Liu ◽  
Chongwu Wang ◽  
Lijie Wang ◽  
Xuefeng Wu ◽  
Lirong Zheng ◽  
...  

The poor photoelectrochemical (PEC) performance derived from insufficient charge separation in hematite photoanode crucially limits its application. Gradient doping with band bending in a large region is then considered as a promising strategy, facilitating the charge transfer ability due to the built-in electric field. Herein, we developed a synthetic strategy to prepare gradient Ti-doped ultrathin hematite photoelectrode and systematically investigated its PEC performance. The as-synthesized electrode (1.5-6.0% doping level from the surface to the substrate) delivered a photocurrent of about 1.30 mA cm-2 at 1.23 V versus the reversible hydrogen electrode (RHE), which is nearly 100% higher than that of homogeneously doped hematite electrode. The enhanced charge transfer property, induced by the energy band bending due to the built-in electric field, has been further confirmed by electrochemical measurements. This strategy of gradient doping should be adaptable and can be applied for other functional materials in various fields.

2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Chunzheng Lv ◽  
Lirong He ◽  
Jiahong Tang ◽  
Feng Yang ◽  
Chuhong Zhang

AbstractAs an important photoconductive hybrid material, perylene/ZnO has attracted tremendous attention for photovoltaic-related applications, but generally faces a great challenge to design molecular level dispersed perylenes/ZnO nanohybrids due to easy phase separation between perylenes and ZnO nanocrystals. In this work, we reported an in-situ reaction method to prepare molecular level dispersed H-aggregates of perylene bisimide/ZnO nanorod hybrids. Surface photovoltage and electric field-induced surface photovoltage spectrum show that the photovoltage intensities of nanorod hybrids increased dramatically for 100 times compared with that of pristine perylene bisimide. The enhancement of photovoltage intensities resulting from two aspects: (1) the photo-generated electrons transfer from perylene bisimide to ZnO nanorod due to the electric field formed on the interface of perylene bisimide/ZnO; (2) the H-aggregates of perylene bisimide in ZnO nanorod composites, which is beneficial for photo-generated charge separation and transportation. The introduction of ordered self-assembly thiol-functionalized perylene-3,4,9,10-tetracarboxylic diimide (T-PTCDI)/ ZnO nanorod composites induces a significant improvement in incident photo-to-electron conversion efficiency. This work provides a novel mentality to boost photo-induced charge transfer efficiency, which brings new inspiration for the preparation of the highly efficient solar cell.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xuehua Wang ◽  
Xianghu Wang ◽  
Jianfeng Huang ◽  
Shaoxiang Li ◽  
Alan Meng ◽  
...  

AbstractConstruction of Z-scheme heterostructure is of great significance for realizing efficient photocatalytic water splitting. However, the conscious modulation of Z-scheme charge transfer is still a great challenge. Herein, interfacial Mo-S bond and internal electric field modulated Z-scheme heterostructure composed by sulfur vacancies-rich ZnIn2S4 and MoSe2 was rationally fabricated for efficient photocatalytic hydrogen evolution. Systematic investigations reveal that Mo-S bond and internal electric field induce the Z-scheme charge transfer mechanism as confirmed by the surface photovoltage spectra, DMPO spin-trapping electron paramagnetic resonance spectra and density functional theory calculations. Under the intense synergy among the Mo-S bond, internal electric field and S-vacancies, the optimized photocatalyst exhibits high hydrogen evolution rate of 63.21 mmol∙g−1·h−1 with an apparent quantum yield of 76.48% at 420 nm monochromatic light, which is about 18.8-fold of the pristine ZIS. This work affords a useful inspiration on consciously modulating Z-scheme charge transfer by atomic-level interface control and internal electric field to signally promote the photocatalytic performance.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 750
Author(s):  
Jixing Sun ◽  
Sibo Song ◽  
Xiyu Li ◽  
Yunlong Lv ◽  
Jiayi Ren ◽  
...  

A conductive metallic particle in a gas-insulated metal-enclosed system can charge through conduction or induction and move between electrodes or on insulating surfaces, which may lead to breakdown and flashover. The charge on the metallic particle and the charging time vary depending on the spatial electric field intensity, the particle shape, and the electrode surface coating. The charged metallic particle can move between the electrodes under the influence of the spatial electric field, and it can discharge and become electrically conductive when colliding with the electrodes, thus changing its charge. This process and its factors are mainly affected by the coating condition of the colliding electrode. In addition, the interface characteristics affect the particle when it is near the insulator. The charge transition process also changes due to the electric field strength and the particle charging state. This paper explores the impact of the coating material on particle charging characteristics, movement, and discharge. Particle charging, movement, and charge transfer in DC, AC, and superimposed electric fields are summarized. Furthermore, the effects of conductive particles on discharge characteristics are compared between coated and bare electrodes. The reviewed studies demonstrate that the coating can effectively reduce particle charge and thus the probability of discharge. The presented research results can provide theoretical support and data for studying charge transfer theory and design optimization in a gas-insulated system.


Author(s):  
Kai Zhang ◽  
Jianzhong Fan ◽  
Chuankui Wang ◽  
Lili Lin

Modulating the relationship between molecular structures and luminescent properties as well as the charge transfer property for deep-red thermally activated delayed fluorescence (TADF) emitters has always been a powerful challenge,...


2021 ◽  
Vol 2109 (1) ◽  
pp. 012025
Author(s):  
Qiuli Zhao ◽  
Qinghao Yang

Abstract 1,8-naphthalimide (NI) dyes are one class of important organic luminophores with good photo-stability, high fluorescent quantum yields and broad emission color-tunability, which are widely used in biological and chemical fields. However, they exhibit bad ACQ property, which heavily limits their application in real word. Contrary to ACQ, tetraphenylethene (TPE) is an AIE luminogen. To eliminate the ACQ effect of NI, TPE was used as core and NI chromophores was used as peripheries to obtain a new dye TPEDNI. TPEDNI dye demonstrates typical aggregation-enhanced emission (AEE) characteristic with high fluorescence Φ>F, solid up to 100% in the film state, which is 24 times of that for its THF solution. Besides, TPEDNI exhibits marked solvatochromism, and the emission peak red-shifts from 505 nm in hexane to 610 nm in acetonitrile. TPENI also displays evident intramolecular charge transfer property in THF/water mixtures


1986 ◽  
Vol 77 ◽  
Author(s):  
P. G. Snyder ◽  
J. E. Oh ◽  
J. A. Woollam

ABSTRACTIt has been shown recently that variable angle of incidence spectroscopie ellipsometry (VASE) is a sensitive technique for determining semiconductor multilayer model parameters, e.g. layer thicknesses and ternary compositions. In this paper we show that VASE is, in addition, sensitive to the Franz-Keldysh effect induced by band bending in the barrier layer of a GaAs-AlGaAs-GaAs (MODFET) structure. VASE measurements differ from electro-reflectance and photoreflectance, in that the internal heterojunction region electric field is directly probed, without the application of a modulating field. The Franz-Keldysh effect appears in the VASE spectra near the AlGaAs bandgap energy. Data for two samples, with different doping profiles, are quantitatively modeled to determine the internal electric field amplitudes.


2021 ◽  
Vol 72 (1) ◽  
pp. 591-616 ◽  
Author(s):  
Wjatscheslaw Popp ◽  
Dominik Brey ◽  
Robert Binder ◽  
Irene Burghardt

Due to the subtle interplay of site-to-site electronic couplings, exciton delocalization, nonadiabatic effects, and vibronic couplings, quantum dynamical studies are needed to elucidate the details of ultrafast photoinduced energy and charge transfer events in organic multichromophoric systems. In this vein, we review an approach that combines first-principles parameterized lattice Hamiltonians with accurate quantum dynamical simulations using advanced multiconfigurational methods. Focusing on the elementary transfer steps in organic functional materials, we address coherent exciton migration and creation of charge transfer excitons in homopolymers, notably representative of the poly(3-hexylthiophene) material, as well as exciton dissociation at polymer:fullerene heterojunctions. We emphasize the role of coherent transfer, trapping effects due to high-frequency phonon modes, and thermal activation due to low-frequency soft modes that drive a diffusive dynamics.


Sign in / Sign up

Export Citation Format

Share Document