scholarly journals Intelligent Shape-Morphing Micromachines

Research ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Qianying Chen ◽  
Pengyu Lv ◽  
Jianyong Huang ◽  
Tian-Yun Huang ◽  
Huiling Duan

Intelligent machines are capable of switching shape configurations to adapt to changes in dynamic environments and thus have offered the potentials in many applications such as precision medicine, lab on a chip, and bioengineering. Even though the developments of smart materials and advanced micro/nanomanufacturing are flouring, how to achieve intelligent shape-morphing machines at micro/nanoscales is still significantly challenging due to the lack of design methods and strategies especially for small-scale shape transformations. This review is aimed at summarizing the principles and methods for the construction of intelligent shape-morphing micromachines by introducing the dimensions, modes, realization methods, and applications of shape-morphing micromachines. Meanwhile, this review highlights the advantages and challenges in shape transformations by comparing micromachines with the macroscale counterparts and presents the future outlines for the next generation of intelligent shape-morphing micromachines.

Proceedings ◽  
2019 ◽  
Vol 42 (1) ◽  
pp. 64 ◽  
Author(s):  
Fidel Rodríguez-Corbo ◽  
Leyre Azpilicueta ◽  
Mikel Celaya-Echarri ◽  
Peio López-Iturri ◽  
Imanol Picallo ◽  
...  

With the growing demand of vehicle-mounted sensors over the last years, the amount of critical data communications has increased significantly. Developing applications such as autonomous vehicles, drones or real-time high-definition entertainment requires high data-rates in the order of multiple Gbps. In the next generation of vehicle-to-everything (V2X) networks, a wider bandwidth will be needed, as well as more precise localization capabilities and lower transmission latencies than current vehicular communication systems due to safety application requirements; 5G millimeter wave (mmWave) technology is envisioned to be the key factor in the development of this next generation of vehicular communications. However, the implementation of mmWave links arises with difficulties due to blocking effects between mmWave transceivers, as well as different channel impairments for these high frequency bands. In this work, the mmWave channel propagation characterization for V2X communications has been performed by means of a deterministic in-house 3D ray launching simulation technique. A complex heterogeneous urban scenario has been modeled to analyze the different propagation phenomena of multiple mmWave V2X links. Results for large and small-scale propagation effects are obtained for line-of-sight (LOS) and non-LOS (NLOS) trajectories, enabling inter-data vehicular comparison. These analyzed results and the proposed methodology can aid in an adequate design and implementation of next generation vehicular networks.


2018 ◽  
Vol 2 (5) ◽  
pp. 295-300
Author(s):  
Joan E. Adamo ◽  
Robert V. Bienvenu ◽  
F. Owen Fields ◽  
Soma Ghosh ◽  
Christina M. Jones ◽  
...  

Building on the recent advances in next-generation sequencing, the integration of genomics, proteomics, metabolomics, and other approaches hold tremendous promise for precision medicine. The approval and adoption of these rapidly advancing technologies and methods presents several regulatory science considerations that need to be addressed. To better understand and address these regulatory science issues, a Clinical and Translational Science Award Working Group convened the Regulatory Science to Advance Precision Medicine Forum. The Forum identified an initial set of regulatory science gaps. The final set of key findings and recommendations provided here address issues related to the lack of standardization of complex tests, preclinical issues, establishing clinical validity and utility, pharmacogenomics considerations, and knowledge gaps.


Lab on a Chip ◽  
2015 ◽  
Vol 15 (14) ◽  
pp. 3013-3020 ◽  
Author(s):  
Sara Mahshid ◽  
Mohammed Jalal Ahamed ◽  
Daniel Berard ◽  
Susan Amin ◽  
Robert Sladek ◽  
...  

We present a lab-on-a-chip for the next generation of single-cell genomics, performing full-cycle single-cell analysis by demonstrating mega-base pair genomic DNAs in nanochannels extracted in situ.


Author(s):  
Syed Aamer Hussain ◽  
Norulhusna Ahmad ◽  
Ibraheem Shayea ◽  
Hazilah Mad Kaidi ◽  
Liza Abdul Latiff ◽  
...  

<span lang="EN-GB">The progressions in telecommunication beyond the 5<sup>th</sup> generation have created a need to improve research drifts. The current 5G study has an important focus on non-orthogonal multiple access (NOMA) technology. sparse code multiple access (SCMA) is a promising technique within NOMA, enhancing the multi-user handling capability of next-generation communication. In the SCMA sphere, codebook designing and optimisation are essential research matters. This study conversed with different codebook design practises existing in the literature, analysing them for numerous parameters, including bit error rate (BER), an optimisation technique, and channel settings. From the analysis, the paper presents the efficiency of different approaches. The article also discusses the prospects and challenges of SCMA optimisation in practical implementation in various domains.</span>


2021 ◽  
Vol 11 ◽  
Author(s):  
Emilie Darrigues ◽  
Benjamin W. Elberson ◽  
Annick De Loose ◽  
Madison P. Lee ◽  
Ebonye Green ◽  
...  

Neuro-oncology biobanks are critical for the implementation of a precision medicine program. In this perspective, we review our first year experience of a brain tumor biobank with integrated next generation sequencing. From our experience, we describe the critical role of the neurosurgeon in diagnosis, research, and precision medicine efforts. In the first year of implementation of the biobank, 117 patients (Female: 62; Male: 55) had 125 brain tumor surgeries. 75% of patients had tumors biobanked, and 16% were of minority race/ethnicity. Tumors biobanked were as follows: diffuse gliomas (45%), brain metastases (29%), meningioma (21%), and other (5%). Among biobanked patients, 100% also had next generation sequencing. Eleven patients qualified for targeted therapy based on identification of actionable gene mutations. One patient with a hereditary cancer predisposition syndrome was also identified. An iterative quality improvement process was implemented to streamline the workflow between the operating room, pathology, and the research laboratory. Dedicated tumor bank personnel in the department of neurosurgery greatly improved standard operating procedure. Intraoperative selection and processing of tumor tissue by the neurosurgeon was integral to increasing success with cell culture assays. Currently, our institutional protocol integrates standard histopathological diagnosis, next generation sequencing, and functional assays on surgical specimens to develop precision medicine protocols for our patients. This perspective reviews the critical role of neurosurgeons in brain tumor biobank implementation and success as well as future directions for enhancing precision medicine efforts.


Lab on a Chip ◽  
2021 ◽  
Author(s):  
Kunpeng Cai ◽  
Shruti Mankar ◽  
Taiga Ajiri ◽  
Kentaro Shirai ◽  
Tasuku Yotoriyama

There is an increasing need for the enrichment of rare cells in the clinical environments of precision medicine, personalized medicine, and regenerative medicine. With the possibility of becoming the next-generation...


2019 ◽  
Vol 498 ◽  
pp. 38-46 ◽  
Author(s):  
Mia Yang Ang ◽  
Teck Yew Low ◽  
Pey Yee Lee ◽  
Wan Fahmi Wan Mohamad Nazarie ◽  
Victor Guryev ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document