scholarly journals Follow-up on Ujarassiorit mineral hunt finds and outreach activities, South-East Greenland

Author(s):  
Majken D. Poulsen ◽  
Holger Paulick ◽  
Diogo Rosa ◽  
Vincent J. Van Hinsberg ◽  
Jonas Petersen ◽  
...  

In connection with fi eld work in South-East Greenland in 2014, we took the opportunity to examine the geology associated with potentially valuable mineral occurrences found by local rock collectors. Th e initial fi nds were made by local collectors as part of Ujarassiorit, which is an annual mineral hunt competition where anyone in Greenland can submit samples of rocks they have found i n the countryside for closer examination by the Ministry of Mineral Resources (see www.ujarassiorit.gl). In the Tasiilaq region, Ujarassiorit resulted in fi nds of corundum, precious metal and base-metal mineral occurrences. Our intention was to locate the original sample sites with help from the local rock collectors, describe the geological context and assess the potential for mineral exploration. Further work will include laboratory analyses of rock samples and geological reporting.

1993 ◽  
Vol 9 ◽  
Author(s):  
B. M. Jnawali ◽  
K. M. Amatya

Application of Geochemical technique in mineral exploration was used in Nepal during 1975-1985 by the Mineral Exploration Development Board (MEDR). Systematic drainage reconnaissance over 40,000 km2 area resulted in the recognition of a large number of anomalies several of which are related to previously unknown mineralizations. The anomalies were categorized  into  1  to 4   assessed  on  the  basis  of  magnitude,  homogeneity,  area and potential host rock. All anomalies of category 1 and 2 that were investigated by follow-up stream sediment and soil geochemistry of varying stages were finally found to disclose the mineralized sources. In all cases, detailed grid soil sampling results in conjunction with geologic observations enabled to ascertain the location, extent and continuity of sub­ outcropping bedrock source with considerable precision, but it was not possible to make reliable estimate of grade. It has been attempted to evaluate the base metal resource based on the data available of the MEDR work as well as Department of Mines and Geology (DMG) and others. Although no economic deposits have been discovered except Ganesh Himal Zinc Lead, about 20 base metal prospects have been drilled and tonnage and grade proved and estimated. Of these, Kalitar Copper and Wapsa Copper deposits are considered to be of marginal economic grade, while the rest are inventoried a deposits of subeconomic to non-economic grade.


1991 ◽  
Vol 152 ◽  
pp. 41-46
Author(s):  
H.K Schønwandt

The most exciting discovery in mineral exploration in Greenland in 1990 was announced by Platinova Resources Ltd. and Corona Corporation. A single packsack drill hole intersected a gold-platinum rich zone in the layered mafic Kap Edvard Holm complex of East Greenland (Fig. 1). The mineralised zone consists of an upper gold-rich section overlying a platinum-rich section. Gold values averaged 2.6 ppm over 1.5 m while the bottom section of the hole yielded 3.4 ppm platinum. Surface sampling indicates that the platinum mineralisation extends 1.5 to 2 m below the bottom of the drill hole. The mineralised zone occurs in a well-defined layered sequence which can be followed for more than 10 km.


Author(s):  
Jesper Kresten Nielsen ◽  
Mikael Pedersen

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Kresten Nielsen, J., & Pedersen, M. (1998). Hydrothermal activity in the Upper Permian Ravnefjeld Formation of central East Greenland – a study of sulphide morphotypes. Geology of Greenland Survey Bulletin, 180, 81-87. https://doi.org/10.34194/ggub.v180.5090 _______________ Bituminous shales of the Ravnefjeld Formation were deposited in the subsiding East Greenland basin during the Upper Permian. The shales are exposed from Jameson Land in the south (71°N; Fig. 1) to Clavering Ø in the north (74°20′N) and have attracted considerable attention due to their high potential as hydrocarbon source rocks (Piasecki & Stemmerik 1991; Scholle et al. 1991; Christiansen et al. 1992, 1993a, b). Furthermore, enrichment of lead, zinc and copper has been known in the Ravnefjeld Formation on Wegener Halvø since 1968 (Lehnert-Thiel 1968; Fig. 1). This mineralisation was assumed to be of primary or early diagenetic origin due to similarities with the central European Kupferschiefer (Harpøth et al. 1986). Later studies, however, suggested base metal mineralisation in the immediately underlying carbonate reefs to be Tertiary in age (Stemmerik 1991). Due to geographical coincidence between the two types of mineralisation, a common history is a likely assumption, but a timing paradox exists. A part of the TUPOLAR project on the ‘Resources of the sedimentary basins of North and East Greenland’ has been dedicated to re-investigation of the mineralisation in the Ravnefjeld Formation in order to determine the genesis of the mineralisation and whether or not primary or early diagenetic base metal enrichment has taken place on Wegener Halvø, possibly in relation to an early period of hydrothermal activity. One approach to this is to study the various sulphides in the Ravnefjeld Formation; this is carried out in close co-operation with a current Ph.D. project at the University of Copenhagen, Denmark. Diagenetically formed pyrite is a common constituent of marine shales and the study of pyrite morphotypes has previously been successful from thermalli immature parts of elucidating depositional environment and thermal effects in the Alum Shale Formation of Scandinavia (Nielsen 1996; Nielsen et al. 1998). The present paper describes the preliminary results of a similar study on pyrite from thermally immature parts of the Ravnefjeld Formation which, combined with the study of textures of base metal sulphides in the Wegener Halvø area (Fig. 1), may provide an important step in the evaluation of the presence or absence of early thermal activity on (or below) the Upper Permian sea floor.


Author(s):  
Henrik Stendal ◽  
Wulf Mueller ◽  
Nicolai Birkedal ◽  
Esben I. Hansen ◽  
Claus Østergaard

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Stendal, H., Mueller, W., Birkedal, N., Hansen, E. I., & Østergaard, C. (1997). Mafic igneous rocks and mineralisation in the Palaeoproterozoic Ketilidian orogen, South-East Greenland: project SUPRASYD 1996. Geology of Greenland Survey Bulletin, 176, 66-74. https://doi.org/10.34194/ggub.v176.5064 _______________ The multidisciplinary SUPRASYD project (1992–96) focused on a regional investigation of the Palaeoproterozoic Ketilidian orogenic belt which crosses the southern tip of Greenland. Apart from a broad range of geological and structural studies (Nielsen et al., 1993; Garde & Schønwandt, 1994, 1995; Garde et al., 1997), the project included a mineral resource evaluation of the supracrustal sequences associated with the Ketilidian orogen (e.g. Mosher, 1995). The Ketilidian orogen of southern Greenland can be divided from north-west to south-east into: (1) a border zone in which the crystalline rocks of the Archaean craton are unconformably overlain by Ketilidian supracrustal rocks; (2) a major polyphase pluton, referred to as the Julianehåb batholith; and (3) extensive areas of Ketilidian supracrustal rocks, divided into psammitic and pelitic rocks with subordinate interstratified mafic volcanic rocks (Fig. 1). The Julianehåb batholith is viewed as emplaced in a magmatic arc setting; the supracrustal sequences south of the batholith have been interpreted as either (1) deposited in an intra-arc and fore-arc basin (Chadwick & Garde, 1996), or (2) deposited in a back-arc or intra-arc setting (Stendal & Swager, 1995; Swager, 1995). Both possibilities are plausible and infer subduction-related processes. Regional compilations of geological, geochemical and geophysical data for southern Greenland have been presented by Thorning et al. (1994). Mosher (1995) has recently reviewed the mineral exploration potential of the region. The commercial company Nunaoil A/S has been engaged in gold prospecting in South Greenland since 1990 (e.g. Gowen et al., 1993). A principal goal of the SUPRASYD project was to test the mineral potential of the Ketilidian supracrustal sequences and define the gold potential in the shear zones in the Julianehåb batholith. Previous work has substantiated a gold potential in amphibolitic rocks in the south-west coastal areas (Gowen et al., 1993.), and in the amphibolitic rocks of the Kutseq area (Swager et al., 1995). Field work in 1996 was focused on prospective gold-bearing sites in mafic rocks in South-East Greenland. Three M.Sc. students mapped showings under the supervision of the H. S., while an area on the south side of Kangerluluk fjord was mapped by H. S. and W. M. (Fig. 4).


Author(s):  
Jesper Kresten Nielsen ◽  
Nils-Martin Hanken

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Kresten Nielsen, J., & Hanken, N.-M. (2002). Late Permian carbonate concretions in the marine siliciclastic sediments of the Ravnefjeld Formation, East Greenland. Geology of Greenland Survey Bulletin, 191, 126-132. https://doi.org/10.34194/ggub.v191.5140 _______________ This investigation of carbonate concretions from the Late Permian Ravnefjeld Formation in East Greenland forms part of the multi-disciplinary research project Resources of the sedimentary basins of North and East Greenland (TUPOLAR; Stemmerik et al. 1996, 1999). The TUPOLAR project focuses on investigations and evaluation of potential hydrocarbon and mineral resources of the Upper Permian – Mesozoic sedimentary basins. In this context, the Upper Permian Ravnefjeld Formation occupies a pivotal position because it contains local mineralisations and has source rock potential for hydrocarbons adjacent to potential carbonate reservoir rocks of the partly time-equivalent Wegener Halvø Formation (Harpøth et al. 1986; Surlyk et al. 1986; Stemmerik et al. 1998; Pedersen & Stendal 2000). A better understanding of the sedimentary facies and diagenesis of the Ravnefjeld Formation is therefore crucial for an evaluation of the economic potential of East Greenland.


Author(s):  
Troels F.D. Nielsen ◽  
Henriette Hansen ◽  
C. Kent Brooks ◽  
Charles E. Lesher

NOTE: This article was published in a former series of GEUS Bulletin. Please use the original series name when citing this article, for example: Nielsen, T. F., Hansen, H., Brooks, C. K., & Lesher, C. E. (2001). The East Greenland continental margin, the Prinsen af Wales Bjerge and new Skaergaard intrusion initiatives. Geology of Greenland Survey Bulletin, 189, 83-98. https://doi.org/10.34194/ggub.v189.5162 _______________ The rifted volcanic margin of East Greenland has remained a major area for field studies and the development of models for the dynamics of plume-related continental break-up since the start of the Danish Lithosphere Centre (DLC) in 1994. The studies cover a range of disciplines and geological processes from the early development of pre-break-up basin formation and sedimentation over the main phase of basaltic magmatism to the late stages of alkaline magmatism and structural re-equilibration. The East Greenland field activities in the summer of 2000, collectively referred to as EG 2000, were facilitated by a logistic platform provided by support from Statens Naturvidenskabelige Forskningsråd (SNF, the Danish Natural Science Research Council) and the Bureau of Minerals and Petroleum (BMP) in Nuuk, Greenland for the retrieval of 6 km of drillcore from the Skaergaard intrusion. During 1989 and 1990 mineral exploration had resulted in drilling of more than 15 km of core through the classic layered gabbros. The logistic platform also provided support for DLC and Geological Survey of Denmark and Greenland (GEUS) field work and projects throughout the Kangerlussuaq region and on the Blosseville Kyst (Fig. 1), as well as mineral exploration and petroleum company activities.


1991 ◽  
Vol 69 (3_suppl) ◽  
pp. 1071-1074
Author(s):  
Virginia Z. Gordon

It was predicted that those participants who experienced discontinuity (death, divorce, and separations) from their parent(s) in childhood and who had successful careers in adulthood would manifest more innovative than adaptive cognitive styles on the Kirton Adaption-Innovation Inventory. The original research showed 61% of the sample members ( n = 41) experienced family discontinuity. Ninety percent ( n = 37) of the previous participants responded and showed 59% family discontinuity. Fifty-four percent in the follow-up study chose an alternative career path (counterstriving), the same percentage as in the original sample. When both family discontinuity and counterstriving were present, statistically significant innovation scores occurred. Family discontinuity in childhood and a successful career in adulthood are likely to be associated with high striving-motivation and an innovative (paradigm-breaking) problem-solving style.


2014 ◽  
Vol 30 (2) ◽  
pp. 311-334 ◽  
Author(s):  
Celeste Stone ◽  
Leslie Scott ◽  
Danielle Battle ◽  
Patricia Maher

Abstract Many longitudinal and follow-up studies face a common challenge: locating study participants. This study examines the extent to which a geographically dispersed subsample of participants can be relocated after 37 to 51 years of noncontact. Relying mostly on commercially available databases and administrative records, the 2011-12 Project Talent Follow-up Pilot Study (PTPS12) located nearly 85 percent of the original sample members, many of whom had not participated in the study since 1960. This study uses data collected in the base year to examine which subpopulations were the hardest to find after this extended hiatus. The results indicate that females were located at significantly lower rates than males. As expected, sample members with lower cognitive abilities were among the hardest-to-reach subpopulations. We next evaluate the extent to which biases introduced during the tracking phase can be minimized by using the multivariate chi-square automatic interaction detection (CHAID) technique to calculate tracking loss adjustments. Unlike a 1995 study that found that these adjustments reduced statistical biases among its sample of located females, our results suggest that statistical adjustments were not as effective in PTPS12, where many participants had not been contacted in nearly 50 years and the tracking rates varied so greatly across subgroups.


2020 ◽  
Author(s):  
Alba Gil ◽  
Alireza Malehmir ◽  
Stefan Buske ◽  
Juan Alcalde ◽  
Puy Ayarza ◽  
...  

<p>Mineral resources are used in large quantities than ever before because they are fundamental to our modern society. To this front and facing an up-scaling challenge, the EIT Raw-Materials funded project SIT4ME (Seismic Imaging Techniques for Mineral Exploration) was launched involving several European institutions. As part of the project, a dense multi-method seismic dataset was acquired in the Zinkgruvan mining area at the Bergslagen mineral district of Sweden, which hosts one of the largest volcanic-hosted massive sulphide (VMS) deposits in the country.</p><p>In November 2018, a dense multi-method seismic dataset was acquired in the Zinkgruvan mining area, in a joint collaborative approach among Swedish, Spanish and German partners. A combination of sparse 3D grid and dense 2D profiles in an area of approximately 6 km<sup>2 </sup>was acquired using a 32t seismic vibrator (10-150 Hz) of TU Bergakademie Freiberg, enabling reasonable pseudo-3D sub-surface illumination. For the data acquisition, a total of approximately 1300 receiver positions (10-20 m apart), using different recorders, and 950 source positions were surveyed. All receivers were active during the data acquisition allowing a combination of 2D and semi-3D data to be obtained for various imaging and comparative studies. The main objective of the study, apart from its commercial-realization approach, was also to provide information useful for deep-targeting and structural imaging in this complex geological setting. The main massive-sulphide bearing horizon, Zinkgruvan formation, is strongly reflective as correlated with the existing boreholes in the mine. Careful analysis of the seismic sections suggests a dominant northeast-dipping structure, consistent with the general plunge of the main Zinkgruvan fold that has been suggested in the area.</p><p>Acknowledgements: EIT-RawMaterials is gratefully thanked for funding this up-scaling project 17024.</p>


Sign in / Sign up

Export Citation Format

Share Document