scholarly journals Supercritical Fluids as a State-of-the-Art Formulation Method of Nanoparticles for Ocular Drug Delivery

Author(s):  
Naida Omerović ◽  
Edina Vranić

Conventional ophthalmic dosage forms, although being simple to apply and presenting great patients' compliance, display poorer drug bioavailability and retention time on the eye surface. To cope with these problems, one must formulate novel drug delivery systems, such as nanosystems, for ocular drug delivery. Different formulation methods of nanoparticles have been developed, but some of them, such as the supercritical fluid method, have not reached their full potential in ocular drug delivery. This article aims to present the possibilities of the supercritical fluid method when preparing nanosystems for ocular drug delivery. This method could be used more frequently and efficiently because it is environmentally friendly and produces nanoparticles of the desired physicochemical properties, which is especially important in ocular drug delivery considering its peculiarities. Modifications of the supercritical fluid method can be used when a drug has some specific properties, which is an additional benefit in ocular drug delivery.

Author(s):  
Sagar T. Malsane ◽  
Smita S. Aher ◽  
R. B. Saudagar

Oral route is presently the gold standard in the pharmaceutical industry where it is regarded as the safest, most economical and most convenient method of drug delivery resulting in highest patient compliance. Over the past three decades, orally disintegrating tablets (FDTs) have gained considerable attention due to patient compliance. Usually, elderly people experience difficulty in swallowing the conventional dosage forms like tablets, capsules, solutions and suspensions because of tremors of extremities and dysphagia. In some cases such as motion sickness, sudden episodes of allergic attack or coughing, and an unavailability of water, swallowing conventional tablets may be difficult. One such problem can be solved in the novel drug delivery system by formulating “Fast dissolving tablets” (FDTs) which disintegrates or dissolves rapidly without water within few seconds in the mouth due to the action of superdisintegrant or maximizing pore structure in the formulation. The review describes the various formulation aspects, superdisintegrants employed and technologies developed for FDTs, along with various excipients, evaluation tests, marketed formulation and drugs used in this research area.


2020 ◽  
Vol 10 ◽  
Author(s):  
Sapna Saini ◽  
Sanju Nanda ◽  
Anju Dhiman

: Chitosan, a natural biodegradable polymer obtained from deacetylation of chitin, has been used as an approbative macromolecule for the development of various novel drug delivery systems. It is one of the most favorable biodegradable carriers for nanoparticulate drug delivery due to its intrinsic properties, such as biocompatibility, biodegradability, non-toxicity, availability of free reactive amino groups, and ease of chemical modification into different active derivatives. Furthermore, interesting physical properties (film-forming, gelling and thickening) make it a suitable candidate for formulations, such as films, microcapsules, beads, nanoparticles, nanofibres, nanogel and so on. Researchers have reported that chitosan nanoparticles act as a promising vehicle for herbal actives as they provide a superior alternative to traditional carriers and improve pharmaceutical efficiency. As no review of chitosan nanoparticles encapsulating herbal extracts and bioactives has been published till date, a maiden effort has been made to collate and review the use of chitosan nanoparticles for the entrapment of phytoconstituents to yield stable, efficient and safe drug delivery systems. Additionally, the paper presents a comprehensive account of the state-of the-art in fabricating herbal chitosan nanoparticles and their current pharmacological status. A list of patents on chitosan nanoparticles of herbal actives has also been included. This review is intended to serve as a didactic discourse for the formulation scientists endeavoring to develop advanced delivery systems for herbal actives.


Author(s):  
Haozhe Yu ◽  
Wenyu Wu ◽  
Xiang Lin ◽  
Yun Feng

Ocular drug delivery is one of the most challenging issues in ophthalmology because of the complex physiological structure of the eye. Polysaccharide-based nanomaterials have been extensively investigated in recent years as ideal carriers for enhancing the bioavailability of drugs in the ocular system because of their biocompatibility and drug solubilization. From this perspective, we discuss the structural instability of polysaccharides and its impact on the synthesis process; examine the potential for developing bioactive polysaccharide-based ocular drug nanocarriers; propose four strategies for designing novel drug delivery nanomaterials; and suggest reviewing the behavior of nanomaterials in ocular tissues.


2018 ◽  
Vol 284 ◽  
pp. 84-102 ◽  
Author(s):  
S. Pescina ◽  
C. Ostacolo ◽  
I.M. Gomez-Monterrey ◽  
M. Sala ◽  
A. Bertamino ◽  
...  

2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Pritam Dinesh Choudhary ◽  
Harshal Ashok Pawar

Due to advances in drug delivery technology, currently, excipients are included in novel dosage forms to fulfil specific functions and in some cases they directly or indirectly influence the extent and/or rate of drug release and drug absorption. Recent trends towards use of plant based and natural products demand the replacement of synthetic additives with natural ones. Today, the whole world is increasingly interested in natural drugs and excipients. These natural materials have many advantages over synthetic ones as they are chemically inert, nontoxic, less expensive, biodegradable, and widely available. This review discusses majority of the plant-derived polymeric compounds (gums and mucilage’s), their sources, chemical constituents, uses, and some recent investigations as excipients in novel drug delivery systems.


Author(s):  
Amol Giri ◽  
Aijaz Sheikh ◽  
P R Tathe ◽  
G R Sitaphale ◽  
K R Biyani

In this present review this new approach of solid lipid Nanoparticles (SLNs) is discussed in terms of their aims, advantages, and disadvantages, methods of preparation, characterization and special features. In the state of developments in the research and development of new drug delivery systems have been made in Last decade by resolving various disorders, such as Low Drug Bioavailability and unpredictable gastric emptying era. Most of the active pharmaceutical ingredients are under poor bioavailability and also their solubility. By using the nanotechnology to overcome this problems of novel drug delivery system. The main advantage of nanotechnology i.e. solid lipid Nanoparticles increases the bioavailability and elimination biological half-life of the drugs. Solid lipid Nanoparticles are spherical lipid particles ranging in size from 1 to 1000 nm and are dispersed in water or in aqueous surfactant solution.


Author(s):  
Supriya Nikam ◽  
Abhilasha Ghule ◽  
Akash Inde ◽  
Anjali Jambhulkar

The Ocular drug delivery system (ODDS) is the prominently challenging system faced by pharmaceutical researchers. Ophthalmic preparations are available in buffered, sterile and isotonic solutions. For the ocular delivery of drugs, various types of dosage forms are prepared and dispensed. As the drops are easier for the administration likewise more prescribed dosage form is the eye drop solution. For obtaining prolonged therapeutic effect ointment, suspensions and gelled systems are also used. The presence of various barriers as anatomical, physiological and physiochemical barriers makes difficulties in delivery of drugs in at the intended sites. Scientists invented alternate delivery routes to direct access at intended target sites. Second invention involves development of novel drug delivery systems providing better permeability, treatability and controlled release at target site. The liposomal delivery is beneficial because they have the ability of envelopment and both hydrophobic and hydrophilic drugs are suitable for delivery to both the anterior and posterior segment of the eye. Therefore, the uses of this alternative approach become quite a necessary. This formulation of novel devices will definitely help to the overcome ocular barriers and side effects with conventional topical drops. Current reviews on the conventional formulations of ocular delivery and their advancements followed by current nanotechnology based on the formulation developments. The recent incident with other ocular drug delivery planning consists of in situ gels, implants, contact lens and nano wafers are discussed. Drug delivery at ophthalmic route has been proven significant advancement for the future perspectives.


2021 ◽  
Vol 14 (11) ◽  
pp. 1201
Author(s):  
Bharti Gupta ◽  
Varsha Mishra ◽  
Sankalp Gharat ◽  
Munira Momin ◽  
Abdelwahab Omri

One of the major impediments to drug development is low aqueous solubility and thus poor bioavailability, which leads to insufficient clinical utility. Around 70–80% of drugs in the discovery pipeline are suffering from poor aqueous solubility and poor bioavailability, which is a major challenge when one has to develop an ocular drug delivery system. The outer lipid layer, pre-corneal, dynamic, and static ocular barriers limit drug availability to the targeted ocular tissues. Biopharmaceutical Classification System (BCS) class II drugs with adequate permeability and limited or no aqueous solubility have been extensively studied for various polymer-based solubility enhancement approaches. The hydrophilic nature of cellulosic polymers and their tunable properties make them the polymers of choice in various solubility-enhancement techniques. This review focuses on various cellulose derivatives, specifically, their role, current status and novel modified cellulosic polymers for enhancing the bioavailability of BCS class II drugs in ocular drug delivery systems.


2020 ◽  
Vol 26 (6) ◽  
pp. 701-709
Author(s):  
Phuong H.L. Tran ◽  
Thao T.D. Tran

Improving drug bioavailability in the pharmaceutical field is a challenge that has attracted substantial interest worldwide. The controlled release of a drug can be achieved with a variety of strategies and novel materials in the field. In addition to the vast development of innovative materials for improving therapeutic effects and reducing side effects, the exploration of remarkable existing materials could encourage the discovery of diverse approaches for adapted drug delivery systems. Recently, superdisintegrants have been proposed for drug delivery systems as alternative approaches to maximize the efficiency of therapy. Although superdisintegrants are well known and used in solid dosage forms, studies on strategies for the development of drug delivery systems using superdisintegrants are lacking. Therefore, this study reviews the use of superdisintegrants in controlled drug release dosage formulations. This overview of superdisintegrants covers developed strategies, types (including synthetic and natural materials), dosage forms and techniques and will help to improve drug delivery systems.


Sign in / Sign up

Export Citation Format

Share Document