scholarly journals Aerodynamic Performance Analysis of a Variable Sweep Wing for Commercial Aircraft Applications

2021 ◽  
Vol 1 (1) ◽  
pp. 31-37
Author(s):  
Radhakrishnan P ◽  
Ramanan G ◽  
Chandan Gowda H R ◽  
Meghana C K ◽  
Chaithra A N

This study presents a detailed study on wing and its configurations and the morphing techniques for the wing. The morphing methods of the wing such as variable chord, variable span variable cambers have been studied in detail. In this study in detail about the effects of morphable sweep wing, the commercial aircraft wing has been designed and it‘s been modelled using the solid works software. To study the aerodynamic performance the wing, the wing has been analysed in ANSYS Fluent software and the results are interpreted in detail to analyze the effect of wing and its shapes. From the results it‘s been clear that at low speed (Mach=0.8) straight wing has high L/D ratio and at the sonic speed (Mach=1) sweep wing has higher L/D ratio and in Supersonic Speed (Mach=1.2) delta wing tends to have higher L/D ratio. Based on these results the wing can be morphed to the configurations to obtain a better performance in each flight regime. Based on these morphing, aircraft performance can be improved in all flight regimes.


2019 ◽  
Vol 16 (2) ◽  
pp. 403-409
Author(s):  
M. P. Arun ◽  
M. Satheesh ◽  
Edwin Raja J. Dhas

Manufacturing and maintaining different aircraft fleet leads to various purposes, which consumes more money as well as man power. Solution to this, nations that are leading in the field of aeronautics are performing much research and development works on new aircraft designs that could do the operations those were done by varied aircrafts. The foremost benefit of this delta wing is, along the huge rearward sweep angle, the wing’s leading edge would not contact the boundary of shock wave. Further, the boundary is produced at the fuselage nose due to the speed of aircraft approaches and also goes beyond the transonic to supersonic speed. Further, rearward sweep angle greatly worse the airspeed: wings under normal condition to leading edge, so permits the aircraft to fly at great transonic, subsonic, or supersonic speed, whereas the over wing speed is kept to minimal range than that of the sound speed. The cropped delta wing with fence has analysed in three cases: Fences at 3/4th distance from the centre, with fences at half distance from the centre and with fences at the centre. Further, the delta wing that cropped is exported to ANSYS FLUENT V14.0 software and analysed by making the boundary condition settings like sonic Mach number of flow over wing along with the angle of attack.



2014 ◽  
Vol 660 ◽  
pp. 689-693 ◽  
Author(s):  
Mohd Sofian ◽  
Rosly Nurhayati ◽  
A.Jamit Rexca ◽  
S. Shamsudin Syariful ◽  
Abdullah Aslam

This study presents a simulation result of an evaluation of the aerodynamic performance of a moving car with a wind turbine system. Sedan type cars (approaching the size of Proton Wira car) were modeled using the SolidWork software and simulation was done by ANSYS FLUENT software. Three car models with different wind turbine system positions (in front of the front bumper, on top of the hood and on top of the roof) plus one model without the wind turbine system were simulated. The study proved that the position of the wind turbine system installation will change the characteristic of the air flow around the car body and affects the aerodynamic performance of the car. Extended front bumper of a car is not significantly affecting the aerodynamic performance of the car. This extended bumper seems to be the suitable area to install a wind turbine system and the investigation shows that the aerodynamic performance of the car improved due to lower drag coefficient, Cd..



Author(s):  
Andrew I. March ◽  
Charles W. Bradley ◽  
Ephraim Garcia

Presently, all man-made aircraft are optimized for one specific flight regime. Commercial aircraft fly at a specific cruising altitude at which they are most efficient, and military aircraft, which require excellent performance in many flight regimes are designed to be ‘good’ at all of them. A new concept in aviation, morphing aircraft, or aircraft that can fully change their shape, will allow for optimization at nearly any flight regime. This concept has been millennia in the making, well before mankind. Looking to various bird species, tails and wings can completely change shape to optimize their morphology for a given flight regime. Raptors, especially, have mastered the air in that they must out compete and overcome other birds while hunting. For soaring, these birds spread their wings fully to maximize their lift to drag ratio and maintain a low energy, long endurance flight. To maximize speed in a dive they will bring their wings close to their bodies to minimize drag. This study seeks to quantify the aerodynamic properties of the wing. From bird wings the aerodynamic properties of shape changing elastic structures can be understood. The coefficient of lift versus angle of attack plot of a bird wing is not like that of a typical airfoil, it has no distinct point where the wing stalls, instead the bird wing will twist into the flow. Additionally, the induced drag of an avian wing is significantly less than the theoretical induced drag on a wing predicted by the aspect ratio. A flow visualization around the slotted wingtips of a bird reveals smooth streaklines near the primary feathers. These feathers are canted downward and accordingly generate lift in the thrust direction of the wing, which acts to reduce the induced drag on the wing.



2019 ◽  
Vol 7 (1) ◽  
pp. 43-53
Author(s):  
Abbas Jassem Jubear ◽  
Ali Hameed Abd

The heat sink with vertically rectangular interrupted fins was investigated numerically in a natural convection field, with steady-state heat transfer. A numerical study has been conducted using ANSYS Fluent software (R16.1) in order to develop a 3-D numerical model.  The dimensions of the fins are (305 mm length, 100 mm width, 17 mm height, and 9.5 mm space between fins. The number of fins used on the surface is eight. In this study, the heat input was used as follows: 20, 40, 60, 80, 100, and 120 watts. This study focused on interrupted rectangular fins with a different arrangement and angle of the fins. Results show that the addition of interruption in fins in various arrangements will improve the thermal performance of the heat sink, and through the results, a better interruption rate as an equation can be obtained.



2014 ◽  
Vol 703 ◽  
pp. 425-429
Author(s):  
Jun Fei Wu ◽  
Zhi Li ◽  
Fan Guo Meng ◽  
Ben Liang Yu

Compared with traditional screw pump,all-metal screw pump have more advantages in the oil extraction. In this paper, all-metal single screw pump's geometric model was made by PROE software; then the dynamic mesh technique was applied to mesh the model and constraint condition was applied in the ANSYS-FLUENT software. 3D flow field was numerical analyzed In that software, the impacts of screw speed on volume flow and volumetric efficiency were concluded, the conclusion can offer some valuable guidances to the all-metal single screw pump's design.



Estimates for pressures on the surface of a given delta wing at zero incidence in a steady uniform stream of air are obtained by numerically integrating two semi-characteristic forms of equations which govern the inviscid supersonic flow of an ideal gas with constant specific heats. In one form of the equations coordinate surfaces are fixed in space so that the surface of the wing, which has round sonic leading edges, is a coordinate surface. In the other, two families of coordinates are chosen to be stream-surfaces. For each form of the equations, a finite difference method has been used to compute the supersonic flow around the wing. Convergence of the numerical results, as the mesh is refined, is slow near the leading edge of the wing and an extrapolation procedure is used to predict limiting values for the pressures on the surface of the wing at two stations where theoretical and experimental results have been given earlier by another worker. At one station differences between the results given here and the results given earlier are significant. The two methods used here produce consistent values for the pressures on the surface of the wing and, on the basis of this numerical evidence together with other cited numerical results, it is concluded that the pressures given here are close to the true theoretical values.



2015 ◽  
Author(s):  
Nilima C. Joshi ◽  
Ayaz J. Khan

ost of the flow phenomena important to modern technology involve turbulence. Propellers generally operate in the very complex flow field that may be highly turbulent and spatially non-uniform. Propeller skew is the single most effective design parameter which has significant influence on reducing propeller induced vibration. Up to date applications of propeller skew does not has a specified criteria for any turbulent model. This paper deals with the model which explains the effect of propeller skewness on hydrodynamic performance related to study of turbulent model via mathematical and numerical modeling. The simulation work is carried out using ANSYS-FLUENT software.



2021 ◽  
Author(s):  
Maryam Habibi ◽  
Mohsen Heidary ◽  
Mohammad Mehdi Tavakol ◽  
Goodarz Ahmadi

Abstract In this study, the dispersion and deposition of particles in the respiratory system attached to a mannequin lying down inside a room were investigated numerically. The respiratory system model was prepared by processing the CT scan images of a volunteer and was attached to a mannequin lying in the middle of a room. The flow field around the mannequin and effects of the thermal plume on the particle aspiration by the mannequin model was simulated using the Ansys-Fluent software. The aspiration efficiency of spherical particles in the airway was studied with the Lagrangian particle trajectory analysis, including the turbulence dispersion effects. For validation of numerical simulations, the aspiration efficiency of the particles obtained from the numerical solution was compared with the case of a standing mannequin. The results are presented for two different modes with upward and downward thermal plumes. For the first mode, due to the strong effect of the thermal plume in the upward direction, the aspiration efficiency of midrange particles increases. However, the aspiration efficiency of large micro-particles decreases for the first mode. For the second mode, with the downward thermal plume, the aspiration efficiency of small micro-particles increases significantly.



Author(s):  
D. A. Romanyuk ◽  
S. V. Panfilov ◽  
D. S. Gromov

Within the scope of the research work, we have developed the methods and software package for solving the conjugate heat and hydraulic problems based on the classical approach to performing hydraulic calculations and modeling thermal processes by means of the finite volume method in the ANSYS Fluent software package. The developed means allowed us to efficiently calculate the thermal state of complex technical objects. The study gives mathematical formulation of the methods and suggests the results of their approbation and verification



2018 ◽  
Vol 56 (3) ◽  
pp. 370
Author(s):  
Nguyen Van Thang ◽  
Ha Tien Vinh ◽  
Bui Dinh Tri ◽  
Nguyen Duy Trong

This article carries out the numerical simulation of airflow over three dimensional car models using ANSYS Fluent software. The calculations have been performed by using realizable k-e turbulence model. The external airflow field of the simplified BMV M6 model with or without a wing is simulated. Several aerodynamic characteristics such as pressure distribution, velocity contours, velocity vectors, streamlines, turbulence kinetic energy and turbulence dissipation energy are analyzed in this study. The aerodynamic forces acting on the car model is calculated and compared with other authors.



Sign in / Sign up

Export Citation Format

Share Document