scholarly journals STRUCTURE AND PROPERTIES OF POWDER MATERIALS OBTAINED BY ELECTRODISPERSION OF NICHROME METAL WASTE

Author(s):  
E. V. Ageeva ◽  
A. Y. Altukhov ◽  
A. V. Shcherbakov

The results of experimental studies aimed at studying the structure and properties of electroerosive nichrome powders obtained in distilled water are presented. The high efficiency of the application of the electrodispersion technology, which provides, at low energy costs, the production of new nichrome powder materials suitable for industrial use, is shown.

2021 ◽  
pp. 276-281
Author(s):  
E.V. Ageeva ◽  
E.V. Ageev ◽  
A.A. Sysoev

The results of experimental studies of the structure and properties of electroerosive high-chromium powders obtained in kerosene are presented. The high efficiency of using the electrodispersing technology is shown, which provides for obtaining new corrosion-resistant powder materials suitable for industrial use at low energy costs.


2021 ◽  
pp. 309-312
Author(s):  
E.V. Ageev ◽  
A.S. Pereverzev

The results of experimental studies of the structure and properties of electroerosive materials from lead bronze waste BrS30 obtained in oxygen- and carbon-containing media are presented. The influence of the chemical composition of liquids and technological parameters of dispersion on the properties of the resulting electroerosive materials is shown. In particular, a part of oxygen is present on the surface of particles obtained in distilled water, and part of carbon is present in lighting kerosene. The average particle size obtained in lighting kerosene is 1.2 times higher than the average particle size obtained in distilled water. The particles of the BrS30 alloy dispersed by electroerosion have a regular spherical, elliptical shape and agglomerates.


Author(s):  
I. P. Korenkov ◽  
A. I. Ermakov ◽  
A. B. Mayzik ◽  
T. N. Laschenova ◽  
V. N. Klochkov ◽  
...  

The aim of the study is to evaluate the volume activity of radioactive waste (RW) by surface and specific alpha contamination using portable gamma-spectrometry.Materials and methods. Methods of rapid assessment of the content of α-emitting radionuclides in solid waste of various morphologies using gamma-spectrometers based on germanium detectors are considered. Computational methods for determining the effectiveness of radionuclide registration are presented.Results. The possibility of using portable gamma-ray spectrometry to assess the surface and specific activity of various materials contaminated with α-emitters (232Th, 235U, 238U, 237Np, 239Pu, 240Pu and 241Am) is shown. The calculated values of the registration efficiency of low-energy gamma-emitters obtained by modeling the spatial-energy parameters of the detector are given.To simplify the solution of this problem, the calculation program used 20 standard templates of various geometries (rectangular, cylindrical, conical, spherical, etc.). The main sources of error in the survey of contaminated surfaces, largesized equipment and building structures were investigated.Conclusions. The possibilities of portable γ-spectrometry for estimating the volume of RW based on the surface density of contamination of materials with radionuclides of uranium and transuranic elements are investigated. When using γ-spectrometer with a high-purity germanium detector with a range of γ-quanta extended in the low-energy region, radionuclides such as 232Th, 235U,238U, 237Np, 241Am were determined by their own radiation or by the radiation of their daughter products.The “problem” element is plutonium, for rapid evaluation of which it is proposed, in accordance with the radionuclide vector methodology, to use 241Am, which accumulates during the β-decay of 241Pu.According to calculations, the most likely value of the activity ratio 239Pu/241Am for the object where the work was performed (scaling factor) varies in the range from 5.0 to 9.0.Based on the results of calculations and experimental studies, the parameters of the efficiency of registration of various α-emitting radionuclides by portable γ-spectrometers. It has been found that for germanium detectors with an absolute efficiency of registering a point source of 7÷15%, it is n×10–5÷n×10–4%.


1987 ◽  
Vol 19 (3-4) ◽  
pp. 391-400 ◽  
Author(s):  
Zhou Ding ◽  
Cai Wei Min ◽  
Wang Qun Hui

This paper studies the use of bipolar-particles-electrodes in the decolorization of dyeing effluents. Treatment of highly colored solutions of various soluble dyes (such as direct, reactive, cationic or acid dyes) and also samples of dyeing effluents gave rise to an almost colorless transparent liquid, with removal of CODcr and BOD5 being as high as over 80%. The method is characterized by its high efficiency, low energy consumption and long performance life. A discussion of the underlying principle is given.


Author(s):  
T. I. Bobkova ◽  
B. V. Farmakovsky ◽  
N. A. Sokolova

The work deals with topical issues such as development of composite nanostructured powder materials. The results of creating powders based on the system “aluminum–nitride of silicon” are presented. Complex investigations of the composition, structure and properties of powder materials, as well as coatings formed on their basis by supersonic cold gas dynamic spraying, were carried out. It has been found that the high-energy treatment of a powder mixture of aluminum with nanofibers of silicon nitride provides the formation of a composite powder in which a new phase of the Si(1-х)AlхO(1-х)Nх type is formed, which additionally increases the hardness in the coatings to be sprayed.


Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 574
Author(s):  
Ana Vafadar ◽  
Ferdinando Guzzomi ◽  
Kevin Hayward

Air heat exchangers (HXs) are applicable in many industrial sectors because they offer a simple, reliable, and cost-effective cooling system. Additive manufacturing (AM) systems have significant potential in the construction of high-efficiency, lightweight HXs; however, HXs still mainly rely on conventional manufacturing (CM) systems such as milling, and brazing. This is due to the fact that little is known regarding the effects of AM on the performance of AM fabricated HXs. In this research, three air HXs comprising of a single fin fabricated from stainless steel 316 L using AM and CM methods—i.e., the HXs were fabricated by both direct metal printing and milling. To evaluate the fabricated HXs, microstructure images of the HXs were investigated, and the surface roughness of the samples was measured. Furthermore, an experimental test rig was designed and manufactured to conduct the experimental studies, and the thermal performance was investigated using four characteristics: heat transfer coefficient, Nusselt number, thermal fluid dynamic performance, and friction factor. The results showed that the manufacturing method has a considerable effect on the HX thermal performance. Furthermore, the surface roughness and distribution, and quantity of internal voids, which might be created during and after the printing process, affect the performance of HXs.


Author(s):  
Parviz Enany ◽  
Oleksandr Shevchenko ◽  
Carsten Drebenstedt

AbstractThis paper presents experimental studies on the optimization of air–water flow in an airlift pump. Airlift pumps use compressed gas to verticall transport liquids and slurries. Due to the lack of theoretical equations for designing and predicting flow regimes, experimental investigations must be carried out to find the best condition to operate an airlift pump at high efficiency. We used a new air injection system and different submergence ratios to evaluate the output of a simple pump for vertical displacement of water in an underground mine. The tests were carried out in a new device with 5.64 m height and 10.2 cm circular riser pipe. Three air-jacket pipes, at different gas flows in the range of 0.002–0.09 m3/s were investigated with eight submergence ratios. It was found that with the same air flow rate, the most efficient flow of water was achieved when an air jacket with 3 mm diameter holes was used with a submergence ratio between 0.6 and 0.75. In addition, a comparison of practical results with two theoretical models proposed by other investigators showed that neither was able to accurately predict airlift performance in air–water flow mode.


2021 ◽  
Vol 11 (10) ◽  
pp. 4349
Author(s):  
Tianzhong Xiong ◽  
Wenhua Ye ◽  
Xiang Xu

As an important part of pretreatment before recycling, sorting has a great impact on the quality, efficiency, cost and difficulty of recycling. In this paper, dual-energy X-ray transmission (DE-XRT) combined with variable gas-ejection is used to improve the quality and efficiency of in-line automatic sorting of waste non-ferrous metals. A method was proposed to judge the sorting ability, identify the types, and calculate the mass and center-of-gravity coordinates according to the shading of low-energy, the line scan direction coordinate and transparency natural logarithm ratio of low energy to high energy (R_value). The material identification was satisfied by the nearest neighbor algorithm of effective points in the material range to the R_value calibration surface. The flow-process of identification was also presented. Based on the thickness of the calibration surface, the material mass and center-of-gravity coordinates were calculated. The feasibility of controlling material falling points by variable gas-ejection was analyzed. The experimental verification of self-made materials showed that identification accuracy by count basis was 85%, mass and center-of-gravity coordinates calculation errors were both below 5%. The method proposed features high accuracy, high efficiency, and low operation cost and is of great application value even to other solid waste sorting, such as plastics, glass and ceramics.


Sign in / Sign up

Export Citation Format

Share Document