scholarly journals Kinematic and dynamic modeling of a 3gdl robot for educational purposes

Author(s):  
Aleyda Irene Reyes-González ◽  
José Luis Ortiz-Simón ◽  
Martha Isabel Aguilera-Hernández ◽  
Gustavo Emilio Rojo-Velázquez

The following article presents the process to obtain the kinematic and dynamic model of a Cartesian robot with 3 degrees of freedom. The robot that is used was designed for educational purposes, it allows two linear movements and one angular. The kinematic model has two forms, direct and inverse, the first provides the final position of the robot if desired values are given to each of the robot's joints, the second provides the values of the joints if there are desired values for the effector final. On the other hand, the obtaining of the dynamic model is presented in detail, which obtains the torques and forces necessary for the robot to be able to move to a specific point. The procedure includes kinematic analysis using Denavit-Hartenberg parameters and dynamic analysis using Jacobeans. As a result, responses obtained from a Simulink model are presented that show the behavior of the developed models.

Author(s):  
Virgala Ivan ◽  
Filakovský Filip

Urgency of the research. Nowadays robotics and mechatronics come to be mainstream. With development in these areas also grow computing fastidiousness. Since there is significant focus on numerical modeling and algorithmization in kinematic and dynamic modeling. Target setting. By automation of whole process of dynamic model design the errors are eliminated as well as the time of designing significantly decreases. Actual scientific researches and issues analysis. Designing of dynamic model by analytical way is very difficult especially in the cases considering high number of DOF. For hyperredundant manipulators it is practically impossible. From this reason whole process is automatized. Uninvestigated parts of general matters defining. The theory of Euler – Lagrange method is automatized by means of robotic view on this issue. The research objective. In the paper, an algorithm for design of dynamic model was introduced. The statement of basic materials. The paper deals with automatic design process of dynamic model for serial kinematic structure mechanisms. In the paper Euler – Lagrange formula is discussed. Analytical way of dynamic modeling should be difficult problem especially for mechanisms with high number of degrees of freedom. From this reason the paper shows the way of automatically designing of dynamic modeling in MATLAB. Our study shows dependence of computing time on increasing DOF. The relation is expressed by function of 3rd order. Subsequently the paper presents automatically generated inverse dynamic model in cooperation with inverse kinematic model as well as trajectory planning task. Conclusions. The paper introduces automatically generated dynamic model for mechanisms with serial kinematic structure. The paper also established the time for designing of dynamic model for several mechanisms with changing DOF.


Robotica ◽  
2019 ◽  
Vol 37 (11) ◽  
pp. 1971-1986
Author(s):  
Ruoyu Feng ◽  
Peng Zhang ◽  
Junfeng Li ◽  
Hexi Baoyin

SummaryIn this study, the kinematics and dynamics of a single actuator wave (SAW)-like robot are explored. Comprising a helical spine and links, SAW has the potential for miniaturization. A kinematic model for SAW is firstly established, and the dynamic equation of motion is derived based on Kane’s method. For validation, the motion of SAW is simulated using both MATLAB and ADAMS, and the comparison of results demonstrates the effectiveness of the theoretical models. Then the inverse dynamic analysis is performed to reveal the power consumption. Finally, robot prototypes are developed and tested to confirm the robot velocity predicted by simulations.


Author(s):  
Mohammed Ahmed ◽  
M. S. Huq ◽  
B. S. K. K. Ibrahim

FES induced movements from indication is promising due to encouraging results being obtained by scholars. The kinematic model usually constitute the initial phase towards achieving the segmental dynamics of any rigid body system. It can be used to ascertain that the model is capable of achieving the desired goal. The dynamic model builds on the kinematic model and is usually mathematically cumbersome depending on the number of degrees-of-freedom. This paper presents a kinematic model applicable for human sit-to-stand movement scenario that will be used to obtain the dynamic model the FES induced movement in a later study. The study shows that the 6 DOF conceptualized sit-to-stand movement can be achieved conveniently using 4 DOF. The 4 DOF has an additional joint compared to similar earlier works which makes more it accurate and flexible. It is more accurate in the sense that it accommodates additional joint i.e. the neck joint whose dynamics could be captured. And more flexible in the sense that if future research uncover more contributions by the segments it can be easily incorporated including that of other segments e.g. the trunk, neck and upper limbs.


Author(s):  
M. Ghazal ◽  
A. Talezadeh ◽  
M. Taheri ◽  
M. Nazemi-Zade

To perform mission in variant environment, several types of mobile robot has been developed an implemented. The mobile robot HILARE is a known wheeled mobile robot which has two fixed wheels and an off-entered orientable wheel. Due to extended application of this robot, its dynamic analysis has attracted a great deal of interests. This article investigates dynamic modeling and motion analysis of the mobile robot HILARE. As the wheels of the robot have kinematic constraints, the constraints of wheels are taken into consideration and the matrix form of the kinematic model of the robot is derived. Furthermore, dynamic model of the robot is developed by consideration of kinematic constraints. To derive dynamic equations of the robot, the Lagrange multiplier method is employed and the governing equations of the robot in state-pace form are presented. Then, some simulations are presented to show applicability of the proposed formulation for dynamic analysis of the mobile robot HILARE.


Author(s):  
R. A. Hart ◽  
N. D. Ebrahimi

Abstract In Part 1 of this report, we described the overall objective of the investigation; that is, the formulation of a dynamic model for determining the time response of a multi-legged robotic vehicle traveling on a variable-topographic terrain. Specifically, we developed expressions for the joint variables, and their rates, which are essential for describing the system’s links orientations, velocities, and accelerations. This procedure enabled us to determine the kinematic quantities associated with the entire vehicular system in accordance with the Newton-Euler method. In the present paper, we formulate the kinetic equations for the multi-degree-of-freedom leg assemblies, the rigid wheels, and the platform of the vehicle to achieve the prescribed motion and corresponding configuration of the system.


Author(s):  
Chen Xiulong ◽  
Jiang Shuai ◽  
Deng Yu ◽  
Wang Qing

In order to understand dynamic responses of planar rigid-body mechanism with clearance, the dynamic model of the mechanism with revolute clearance is proposed and the dynamic analysis is realized. First, the kinematic model of the revolute clearance is built; the amount of penetration depth and relative velocity between the elements of the revolute clearance joint is obtained. Second, Lankarani-Nikravesh (L-N) and the novel nonlinear contact force model are both used to describe the normal contact force of the revolute clearance, and the tangential contact force of the revolute clearance is built by modified Coulomb friction model. Third, the dynamic model of a two degrees-of-freedom (2DOFs) nine bars rigid-body mechanism with a revolute clearance is built by the Lagrange equation. The fourth-order Runge–Kutta method has been utilized to solve the dynamic model. And the effects of different driving speeds of cranks, different clearance values, and different friction coefficients on dynamic response are analyzed. Finally, in order to prove the validity of numerical calculation result, the virtual prototype model of 2DOFs nine bars mechanism with clearance is modeled and its dynamic responses are analyzed by adams software. This research could supply theoretical basis for dynamic modeling, dynamic behaviors analysis, and clearance compensation control of planar rigid-body mechanism with clearance.


Author(s):  
Kambiz Ghaemi Osgouie ◽  
Ali Meghdari ◽  
Saeed Sohrabpour ◽  
Mehdi Salmani Jelodar

The Dual-Arm Cam-Lock (DACL) robot manipulators are reconfigurable arms formed by two parallel cooperative manipulators. Some of their joints may lock into each other. Therefore, the arms normally operate redundantly. However, when higher structural stiffness is needed these two arms can lock into each other in specific joints and loose some degrees of freedom. In this paper, the dynamics of the DACL robot is discussed and parametrically formulated. On the other hand, the criteria and implementation of genetic algorithm (GA) to optimize the configuration of DACL robot manipulators at a specific point with the objective to maximize the cooperatively applicable task-space force in a desired direction are addressed. To obtain a more efficient process, an initial population is generated satisfying the geometrical constraints of the planar arms.


Author(s):  
S. Caro ◽  
D. Chablat ◽  
P. Lemoine ◽  
P. Wenger

The subject of this paper is about the kinematic analysis and the trajectory planning of the Orthoglide 5-axis. The Orthoglide 5-axis a five degrees of freedom parallel kinematic machine developed at IRCCyN and is made up of a hybrid architecture, namely, a three degrees of freedom translational parallel manipulator mounted in series with a two degrees of freedom parallel spherical wrist. The simpler the kinematic modeling of the Orthoglide 5-axis, the higher the maximum frequency of its control loop. Indeed, the control loop of a parallel kinematic machine should be computed with a high frequency, i.e., higher than 1.5 MHz, in order the manipulator to be able to reach high speed motions with a good accuracy. Accordingly, the direct and inverse kinematic models of the Orthoglide 5-axis, its inverse kinematic Jacobian matrix and the first derivative of the latter with respect to time are expressed in this paper. It appears that the kinematic model of the manipulator under study can be written in a quadratic form due to the hybrid architecture of the Orthoglide 5-axis. As illustrative examples, the profiles of the actuated joint angles (lengths), velocities and accelerations that are used in the control loop of the robot are traced for two test trajectories.


2013 ◽  
Vol 475-476 ◽  
pp. 1391-1396 ◽  
Author(s):  
Zhan Feng Qi ◽  
Li Juan Jia ◽  
Yu Feng Qin ◽  
Sen Zhang ◽  
Xiu Jun Sun

The submersible buoy system is an important tool in the profile observation of marine environment. According to the lumped mass based method, the dynamic modeling of the submersible buoy system is established, then the dynamic analysis is carried out. The dynamic model is solved and analyzed by using the software MATLAB. The result provides theoretical reference for its structural design and numerical computation of the submersible buoy system.


2017 ◽  
Vol 9 (7) ◽  
pp. 168781401771241
Author(s):  
Chao Dong ◽  
Kai Cheng ◽  
Kangle Hu ◽  
WenQiang Hu

Articulated tracked vehicles are used as special off-road transportation vehicles, and their mobility is gaining more attention now than before. As an important evaluation indicator of the mobility of articulated tracked vehicles, steering performance receives wide attention in particular. Most of the present studies focus on the planar steering performance; few studies employing current models concentrate on the slope steering performance of articulated tracked vehicles. To address this research gap, this study proposes a dynamic modeling method for analyzing the slope steering performance of articulated tracked vehicles. A kinematic model of a vehicle is initially constructed to analyze its kinematic characteristics during slope steering; these characteristics include velocity and acceleration. A dynamic model of a vehicle is then developed to analyze its mechanical characteristics during slope steering; these characteristics include vertical loads, driving forces, and driving moments of tracks. The created dynamic model is then applied to analyze the slope steering performance of a specific articulated tracked vehicle. A mechanical-control united simulation model and an actual test of an articulated tracked vehicle are suggested to verify the established steering model. Comparison results show the effectiveness of the proposed dynamic steering model.


Sign in / Sign up

Export Citation Format

Share Document