scholarly journals Hybrid materials based on ZnO and SiO2 nanoparticles as hydrophobic coatings for textiles

2020 ◽  
Vol 71 (04) ◽  
pp. 297-301
Author(s):  
LAURA CHIRILA ◽  
LUDMILA OTILIA CINTEZA ◽  
MARIA TANASE ◽  
DIANA ELENA RADULESCU ◽  
DENISA MARIA RADULESCU ◽  
...  

This study presents a strategy to obtain textile materials with hydrophobic/oleophobic effect by applying hybrid coatings based on a mixture of flower-like ZnO nanoparticles and organically modified SiO2 nanoparticles (ORMOSIL). The obtained dispersions based on both types of nanoparticles are stable, with unimodal distribution of smaller quasi spherical shape and average size of 158 nm for SiO2 nanoparticles and respectively, with bimodal distribution with a broad distribution of particle size and average size of 144 nm and 435 nm for ZnO flower-like nanoparticles. The ZnO/SiO2 NPs based dispersions were then applied on 100% cotton fabrics on a laboratory scale by padding method in two successive phases. The functionalized cotton fabrics were evaluated in terms of surface morphology changes, whiteness degree and water and oils repellent properties. The developed textile materials exhibited a low wetting capacity, with high values of water absorption time (>15 minutes) and a water-repellent degree of 75 (AATCC photographic scale) and 2.5 respectively (ISO scale) showing an acceptable hydrophobic effect. The functionalization treatment based on mixture of ZnO/SiO2 nanoparticles led to obtaining an efficient cotton substrate for the rejection and protection against the oily substances which exhibit an oil repellency degree of 6. Also, the functionalization treatments did not significantly change the surface morphology of the fibres, suggesting that the bulk properties of the cotton fibres remained undamaged.

Polymers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 888
Author(s):  
Nguyen Thi Thanh Hai ◽  
Nguyen Duc Cuong ◽  
Nguyen Tran Quyen ◽  
Nguyen Quoc Hien ◽  
Tran Thi Dieu Hien ◽  
...  

Cu nanoparticles are a potential material for creating novel alternative antimicrobial products due to their unique antibacterial/antifungal properties, stability, dispersion, low cost and abundance as well as being economical and ecofriendly. In this work, carboxymethyl cellulose coated core/shell SiO2@Cu nanoparticles (NPs) were synthesized by a simple and effective chemical reduction process. The initial SiO2 NPs, which were prepared from rice husk ash, were coated by a copper ultrathin film using hydrazine and carboxymethyl cellulose (CMC) as reducing agent and stable agent, respectively. The core/shell SiO2@Cu nanoparticles with an average size of ~19 nm were surrounded by CMC. The results indicated that the SiO2@Cu@CMC suspension was a homogenous morphology with a spherical shape, regular dispersion and good stability. Furthermore, the multicomponent SiO2@Cu@CMC NPs showed good antifungal activity against Phytophthora capsici (P. capsici). The novel Cu NPs-based multicomponent suspension is a key compound in the development of new fungicides for the control of the Phytophthora disease.


2020 ◽  
Vol 38 (3) ◽  
pp. 182-195
Author(s):  
Tarek M. Abou Elmaaty ◽  
Shereen A. Abdeldayem ◽  
Nashwa Elshafai

Thermochromic (TC) pigments offer significant potential for functional and aesthetic design of smart textile materials. In this study, TC (blue and red) pigments were applied to cotton fabrics and printed on especially designed childrenswear by flat screen printing technique. The antibacterial and ultraviolet protection functionalities have been implemented into the fabrics under study by using selenium nanoparticles. The factors affecting the printing process were studied and the optimum formula was screen printed to produce the pattern’s designs of childrenswear. After conducting several tests, the results showed a significant color-changing effect depending on temperature, the color fastness properties to light, wash, and rubbing were excellent. Antibacterial activity of printed fabrics was very good against Bacillus cereus and Escherichia coli bacteria and the anti-ultraviolet protection was found to be very good. The printed fabrics can be as protective childrenswear as shown in this work.


2018 ◽  
Vol 136 (13) ◽  
pp. 47280 ◽  
Author(s):  
Dongdong Wei ◽  
Chaohong Dong ◽  
Zhaohua Chen ◽  
Jian Liu ◽  
Qun Li ◽  
...  

2018 ◽  
Vol 89 (6) ◽  
pp. 1013-1026 ◽  
Author(s):  
Rongrong Yu ◽  
Mingwei Tian ◽  
Lijun Qu ◽  
Shifeng Zhu ◽  
Jianhua Ran ◽  
...  

Cotton fabrics with hydrophilic-to-hydrophobic asymmetric surfaces are attractive as potential utilizable structures for functional garments. The spray-coating route could be deemed as a fast and simple way to achieve asymmetric surfaces. In this paper, SiO2 nanoparticles with size ∼ 205 nm were synthesized via the modified sol-gel method, and then modified with poly(vinylidene fluoride) (PVDF) to form a hydrophobic surface. The SiO2 nanoparticles modified with PVDF were uniformly deposited on the outer surface of cotton fabric aided with the robust air flow force from the sprayer. The morphology and chemical structures were characterized by scanning electron microscopy, mapping, atomic force microscopy, X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy. The results indicated that SiO2 nanoparticles were evenly deposited on the surface of cotton fibers and stable interfacial interaction occurred between SiO2 and PVDF molecular chains. The existence of SiO2 could increase the roughness of the fabric surface, which could enhance the water-repellent property of the coated fabrics. Furthermore, the water-repellent property and thermal insulation properties were evaluated via the water contact angle and thermal conductivity tests, respectively, and the results showed that 20 wt.% SiO2/PVDF fabric achieved a desirable level of contact angle, 136.6°, which was the largest water contact angle among all the samples, and the lowest thermal conductivity of 0.033 W/mK, resulting from the existence of SiO2 nanoparticles. Such a fast and simple spray-coating strategy could be widely introduced into asymmetric fabric modification, and such asymmetric fabrics with reasonable water-repellent and thermal insulating outer surfaces could act as candidates in the field of functional garments.


Author(s):  
Zahra Salehi ◽  
Azam Fattahi ◽  
Ensieh lotfali ◽  
Abdolhassan Kazemi ◽  
Ali Shakeri-Zadeh ◽  
...  

Purpose: The present study was performed to examine whether caspofungin-coated gold nanoparticles (CAS-AuNPs) may offer the right platform for sensitivity induction in resistant isolates. Methods: For the purpose of the study, a total of 58 archived Candida species were enrolled in the research. The identification of Candida spp. was performed using polymerase chain reaction-restriction fragment length polymorphism and HWP1 gene amplification approaches. The conjugated CAS-AuNPs were synthesized and then characterized using transmission electron microscopy (TEM) and Zetasizer system to determine their morphology, size, and charge. Furthermore, the efficacy of CAS, CAS-AuNPs conjugate, and AuNPs against Candida spp. was assessed based on the Clinical and Laboratory Standards Institute M60. Finally, the interaction of CAS-AuNPs with Candida element was evaluated via scanning electron microscopy (SEM). Results: According to the TEM results, the synthesized CAS-AuNPs had a spherical shape with an average size of 20 nm. The Zeta potential of CAS-AuNPs was -38.2 mV. Statistical analyses showed that CAS-AuNPs could significantly reduce the minimum inhibitory concentration against C. albicans (P=0.0005) and non-albicans Candida (NAC) species (P<0.0001). All isolates had a MIC value of ≥ 4 µg/ml for CAS, except for C. glabrata. The results of SEM analysis confirmed the effects of AuNPs on the membrane and cell wall structure of C. globrata exposed to CAS-AuNPs, facilitating the formation of pores on the cell wall and finally cell death. Conclusion: The findings revealed that CAS-AuNPs conjugates had significant antifungal effects against Candida spp. through the degradation of the membrane and cell wall integrity. Therefore, it can be concluded that the encapsulation of antifungal drugs in combination with NPs not only diminishes side effects but also enhances the effectiveness of the medications.


Author(s):  
Mohib Shah ◽  
Natasha Anwar ◽  
Samreen Saleem ◽  
Iqbal Munir ◽  
Niaz Ali Shah ◽  
...  

Background. Nanotechnology is promising field for generating new applications. A green synthesis of nanoparticles through biological methods using plant extract have a reliable and ecofriendly approach to improve our global environment. Methods. Silver nanoparticles (AgNPs) were synthesized using aqueous extract of Anagalis arvensis L and silver nitrate and were physicochemically characterized. Results. The stability of AgNPs toward acidity, alkalinity, salinity and temperature showed that they remained stable at room temperature for more than two months. The SEM and TEM analysis of the AgNPs showed that they have a uniform spherical shape with an average size in the range of 40&ndash;78 nm. Further 1-Dibhenyl-2-Picrylhydrazl radical in Anagalis arvensis L.mediated AgNPs showed a maximum activity of 98% at concentration of 200&mu;g/mL. Hydrogen peroxide scavenging assay in Anagalis arvensis L. mediated AgNPs showed a maximum activity of 85% at concentration of 200&mu;g/mL. Reducing power of Anagalis arvensis L.Ag NPs exhibited a higher activity of 330 &mu;g/mL at concentration of 200 &mu;g/mL. These NPs have cytotoxic effects against brine shrimp (Artemia salina) nauplii with a value of 53% LD 178.04&mu;g/mL. Conclusion. The AgNPs synthesized using&nbsp;Anagalis arvensis L. extract demonstrate a broad range of applications.


Tekstilec ◽  
2017 ◽  
Vol 60 (1) ◽  
pp. 29-35 ◽  
Author(s):  
Giuseppe Rosace ◽  
◽  
Claudio Colleoni ◽  
Emanuela Guido ◽  
Giulio Malucelli ◽  
...  

2015 ◽  
Vol 1131 ◽  
pp. 251-254
Author(s):  
Montri Aiempanakit ◽  
Chantana Salawan ◽  
Kamon Aiempanakit

The effect of continuous and discontinuous deposition time on the properties of TiO2 thin films deposited by reactive direct current magnetron sputtering (DCMS) on glass substrates was investigated. The deposition processes were designed for a condition of continuous deposition time D1 (60 min) and three conditions of discontinuous deposition time D2 (30 min × 2 times), D3 (15 min × 4 times), and D4 (1 min × 60 times). The crystal structure, surface morphology, and hydrophilicity of TiO2 thin films were characterized by X-ray diffraction, atomic force microscope, and water contact angle method, respectively. It was found that the increasing of discontinuous deposition time (conditions from D1 to D4) shows the changing of grain size from big grain size with spherical shape to small grain size with oval shape. The crystallinity of TiO2 films decrease with increasing the discontinuous deposition time. The water contact angles also decrease as a function of increasing discontinuous deposition time. These results may be explained from the accumulation of heat on the substrate which affected the phase composition and surface morphology of TiO2 thin films.


2007 ◽  
Vol 334-335 ◽  
pp. 1145-1148 ◽  
Author(s):  
Yin Ye ◽  
Fang Li Yuan ◽  
Li Min Zhou ◽  
Hai Tao Huang

Fine nickel powders have been prepared by chemical reduction between nickel acetate and alcohol under solvothermal conditions. The effect of adding surfactant and varying solvent on the particle size of the as-synthesized nickel powders have been explored. SEM, XRD and TG were employed to characterize the size, morphology, crystalline structure and the thermal stability of the as-synthesized nickel powders. It is revealed that the FCC-structured nickel powders are of uniform spherical shape with good crystallinity and thermal stability. Typically, nickel powders with an average size of 300 nm were obtained at 200°C for 8 h using 0.04 mol/L solution of Ni(CH3COO)2·4H2O in n-butyl alcohol under solvothermal conditions.


2010 ◽  
Vol 8 (5) ◽  
pp. 1041-1046 ◽  
Author(s):  
Raúl Reza ◽  
Carlos Martínez Pérez ◽  
Claudia Rodríguez González ◽  
Humberto Romero ◽  
Perla García Casillas

AbstractIn this work, the synthesis of magnetite nanoparticles by two variant chemical coprecipitation methods that involve reflux and aging conditions was investigated. The influence of the synthesis conditions on particle size, morphology, magnetic properties and protein adsorption were studied. The synthesized magnetite nanoparticles showed a spherical shape with an average particle size directly influenced by the synthesis technique. Particles of average size 27 nm and 200 nm were obtained. When the coprecipitation method was used without reflux and aging, the smallest particles were obtained. Magnetite nanoparticles obtained from both methods exhibited a superparamagnetic behavior and their saturation magnetization was particle size dependent. Values of 67 and 78 emu g−1 were obtained for the 27 nm and 200 nm magnetite particles, respectively. The nanoparticles were coated with silica, aminosilane, and silica-aminosilane shell. The influence of the coating on protein absorption was studied using Bovine Serum Albumin (BSA) protein.


Sign in / Sign up

Export Citation Format

Share Document