scholarly journals A preliminary study of printed electronics through flexography impression on flexible substrates

2021 ◽  
Vol 72 (02) ◽  
pp. 133-137
Author(s):  
ANA M. RODES-CARBONELL ◽  
JOSUÉ FERRI ◽  
EDUARDO GARCIA-BREIJO ◽  
EVA BOU-BELDA

The work is framed within Printed Electronics, an emerging technology for the manufacture of electronic products. Among the different printing methods, the roll-to-roll flexography technique is used because it allows continuous manufacturing and high productivity at low cost. Apart from the process parameters, the ink and the substrate properties are some of the variables associated with the flexographic printing. Specifically, this study investigates the ink penetration, the print uniformity, the adhesion, the fastness, and the electrical behaviour of the same conductive silver ink printed on different flexible substrates through the flexography process. In addition to polymeric and siliconized paper substrates, which are typical used in printed electronics, two substrates were also chosen for the study: woven and nonwoven fabric. Optical, scanning electronic microscope (SEM), 4-point Kelvin and colour fastness to wash and rubbing analyses have been performed. The results concluded that, regarding the conductivity behaviour, porous substrates like textiles and nonwoven fabrics without pre and post treatments do not present acceptable results, whereas polymers or silicone papers do. Nevertheless, woven and nonwoven fabrics are a suitable early option regarding colour fastness to wash instead of thin polymeric and paper substrates that tear at the wash machine. A solution for an optimal printing on textiles would be the surface substrates pre-treatment by applying different chemical compounds that increase the adhesion of the ink on the fabric

2013 ◽  
Vol 844 ◽  
pp. 158-161 ◽  
Author(s):  
M.I. Maksud ◽  
Mohd Sallehuddin Yusof ◽  
M. Mahadi Abdul Jamil

Recently low cost production is vital to produce printed electronics by roll to roll manufacturing printing process like a flexographic. Flexographic has a high speed technique which commonly used for printing onto large area flexible substrates. However, the minimum feature sizes achieved with roll to roll printing processes, such as flexographic is in the range of fifty microns. The main contribution of this limitation is photopolymer flexographic plate unable to be produced finer micron range due to film that made by Laser Ablation Mask (LAMs) technology not sufficiently robust and consequently at micron ranges line will not be formed on the printing plate. Hence, polydimethylsiloxane (PDMS) is used instead of photopolymer. Printing trial had been conducted and multiple solid lines successfully printed for below fifty microns line width with no interference between two adjacent lines of the printed images.


2019 ◽  
Vol 9 (2) ◽  
pp. 14 ◽  
Author(s):  
Henrik Andersson ◽  
Pavol Šuly ◽  
Göran Thungström ◽  
Magnus Engholm ◽  
Renyun Zhang ◽  
...  

Flexible electronics is a field gathering a growing interest among researchers and companies with widely varying applications, such as organic light emitting diodes, transistors as well as many different sensors. If the circuit should be portable or off-grid, the power sources available are batteries, supercapacitors or some type of power generator. Thermoelectric generators produce electrical energy by the diffusion of charge carriers in response to heat flux caused by a temperature gradient between junctions of dissimilar materials. As wearables, flexible electronics and intelligent packaging applications increase, there is a need for low-cost, recyclable and printable power sources. For such applications, printed thermoelectric generators (TEGs) are an interesting power source, which can also be combined with printable energy storage, such as supercapacitors. Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), or PEDOT:PSS, is a conductive polymer that has gathered interest as a thermoelectric material. Plastic substrates are commonly used for printed electronics, but an interesting and emerging alternative is to use paper. In this article, a printed thermoelectric generator consisting of PEDOT:PSS and silver inks was printed on two common types of paper substrates, which could be used to power electronic circuits on paper.


2016 ◽  
Vol 4 (15) ◽  
pp. 3224-3230 ◽  
Author(s):  
Donghe Du ◽  
Pengcheng Li ◽  
Jianyong Ouyang

A low cost graphene coated nonwoven fabric wearable sensor can monitor a series of human motions including pulse and respiration.


2019 ◽  
Vol 33 (3) ◽  
pp. 377-384 ◽  
Author(s):  
Irena Ivanišević ◽  
Petar Kassal ◽  
Andrea Milinković ◽  
Anamarija Rogina ◽  
Stjepan Milardović

Electrical conductivity is a key factor in measuring performance of printed electronics,<br /> but the conductivity of inkjet-printed silver nanoinks greatly depends on post-fabrication<br /> sintering. In this work, two different conductive silver nanoinks, in which the silver nanoparticles were stabilized by two different capping agents – Poly(acrylic acid) (PAA) and Poly(methacrylic acid) (PMA) – were synthesized. The inks were inkjet-printed on flexible PET substrates, coated with an additional polycation layer, which facilitated<br /> chemical sintering. The printed features were then exposed to moderately elevated<br /> temperatures to evaluate the effect of combined chemical and thermal sintering. Both<br /> inks produced conductive features at room temperature, and the conductivity increased<br /> with both temperature and duration of sintering. At temperatures above 100 °C, the choice of capping agent had no pronounced effect on conductivity, which approached very high values of 50 % of bulk silver in all cases. The lowest resistivity (2.24 μΩ cm) was obtained after sintering at 120 °C for 180 min. By combining chemical and conventional thermal sintering, we have produced remarkably conductive silver electrodes on flexible substrates, while using low-cost and simple processes.


Electronics ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1636 ◽  
Author(s):  
Sangkil Kim

The newly developed research area of inkjet-printed radio frequency (RF) electronics on cellulose-based and synthetic paper substrates is introduced in this paper. This review paper presents the electrical properties of the paper substrates, the printed silver nanoparticle-based thin films, the dielectric layers, and the catalyst-based metallization process. Numerous inkjet-printed microwave passive/ative systems on paper, such as a printed radio frequency identification (RFID) tag, an RFID-enabled sensor utilizing carbon nanotubes (CNTs), a substrate-integrated waveguide (SIW), fully printed vias, an autonomous solar-powered beacon oscillator (active antenna), and artificial magnetic conductors (AMC), are discussed. The reported technology could potentially act as the foundation for true “green” low-cost scalable wireless topologies for autonomous Internet-of-Things (IoT), bio-monitoring, and “smart skin” applications.


Polymers ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 3165
Author(s):  
Ana María Rodes-Carbonell ◽  
Josué Ferri ◽  
Eduardo Garcia-Breijo ◽  
Ignacio Montava ◽  
Eva Bou-Belda

The work is framed within Printed Electronics, an emerging technology for the manufacture of electronic products. Among the different printing methods, the roll-to-roll flexography technique is used because it allows continuous manufacturing and high productivity at low cost. Nevertheless, the incorporation of the flexography printing technique in the textile field is still very recent due to technical barriers such as the porosity of the surface, the durability and the ability to withstand washing. By using the flexography printing technique and conductive inks, different printings were performed onto woven fabrics. Specifically, the study is focused on investigating the influence of the structure of the woven fabric with different weave construction, interlacing coefficient, yarn number and fabric density on the conductivity of the printing. In the same way, the influence of the weft composition was studied by a comparison of different materials (cotton, polyester, and wool). Optical, SEM, color fastness to wash, color measurement using reflection spectrophotometer and multi-meter analyses concluded that woven fabrics have a lower conductivity due to the ink expansion through the inner part of the textile. Regarding weft composition, cotton performs worse due to the moisture absorption capacity of cellulosic fiber. A solution for improving conductivity on printed electronic textiles would be pre-treatment of the surface substrates by applying different chemical compounds that increase the adhesion of the ink, avoiding its absorption.


2018 ◽  
Vol 2018 (1) ◽  
pp. 82-86
Author(s):  
Rakel Herrero ◽  
Maite Aresti ◽  
María Lasheras ◽  
Itziar Landa ◽  
Juncal Estella ◽  
...  

Author(s):  
Mahesh Soni ◽  
Dhayalan Shakthivel ◽  
Adamos Christou ◽  
Ayoub Zumeit ◽  
Nivasan Yogeswaran ◽  
...  

2006 ◽  
Vol 326-328 ◽  
pp. 187-190
Author(s):  
Jong Sun Kim ◽  
Chul Jin Hwang ◽  
Kyung Hwan Yoon

Recently, injection molded plastic optical products are widely used in many fields, because injection molding process has advantages of low cost and high productivity. However, there remains residual birefringence and residual stresses originated from flow history and differential cooling. The present study focused on developing a technique to measure the birefringence in transparent injection-molded optical plastic parts using two methods as follows: (i) the two colored laser method, (ii) the R-G-B separation method of white light. The main idea of both methods came from the fact that more information can be obtained from the distribution of retardation caused by different wavelengths. The comparison between two methods is demonstrated for the same sample of which retardation is up to 850 nm.


Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3742
Author(s):  
Payam Sadrolodabaee ◽  
Josep Claramunt ◽  
Mònica Ardanuy ◽  
Albert de la Fuente

Currently, millions of tons of textile waste from the garment and textile industries are generated worldwide each year. As a promising option in terms of sustainability, textile waste fibers could be used as internal reinforcement of cement-based composites by enhancing ductility and decreasing crack propagation. To this end, two extensive experimental programs were carried out, involving the use of either fractions of short random fibers at 6–10% by weight or nonwoven fabrics in 3–7 laminate layers in the textile waste-reinforcement of cement, and the mechanical and durability properties of the resulting composites were characterized. Flexural resistance in pre- and post-crack, toughness, and stiffness of the resulting composites were assessed in addition to unrestrained drying shrinkage testing. The results obtained from those programs were analyzed and compared to identify the optimal composite and potential applications. Based on the results of experimental analysis, the feasibility of using this textile waste composite as a potential construction material in nonstructural concrete structures such as facade cladding, raised floors, and pavements was confirmed. The optimal composite was proven to be the one reinforced with six layers of nonwoven fabric, with a flexural strength of 15.5 MPa and a toughness of 9.7 kJ/m2.


Sign in / Sign up

Export Citation Format

Share Document