scholarly journals Creating and updating of topographic maps height base in the new national spatial coordinate system: case Fergana valley

Author(s):  
Dilbarkhon Fazilova ◽  
Khasan Magdiev

The use of high-precision technology of the global navigation satellite system (GNSS) has put forward the task of developing the methods for the creation and the use of a new national open coordinate system in the Republic of Uzbekistan. In the country, up to now the CS42 coordinate system, based on the Krasovsky ellipsoid used for geodetic works. The Baltic normal system of heights (1977), tied to the mean sea level with the zero mark of the Kronstadt tide gauge, was adopted as a height datum. Due to lack geoid information for the territory of the country determined by modern methods, the realization of a height reference datum becomes an urgent task. The results of GPS measurements usually presented in a coordinate system relative to the WGS-84 ellipsoid, and have to convert to national, local coordinate systems to solve practical problems. The horizontal GPS coordinates can directly use for computational work, but the geodetic heights have to convert to orthometric (or normal) heights for a given area using geoid information. In this work, a study was made of methods for updating the height reference datum of topographic maps at a scale of 1:200,000 using a deformation matrix between two reference coordinate systems for the territory of the Fergana Valley. To convert between geodetic and normal heights between the CS42 and WGS84 coordinate systems, a vertical deformation matrix in the GTX format of the National oceanic and Atmospheric Administration of Canada (NOAA) have created. To create a file of elevation displacements, the results of classical leveling and satellite GPS measurements have used at 144 “common” points of the entire network of the country with known coordinates in two systems. The difference between the “real” values of geodetic heights obtained from GPS measurements and “modeled” ranges from -0.13 m to 0.67 m. It has revealed that the maximum differences in heights are in the area of the Fergana basin itself and may be a consequence of both an anomalous gravitational field in this part of the territory, and an insufficient density of stations of the GPS network in the northeastern part of the area. The normal height values for the updated topographic map in WGS84 have computed using the EGM2008 high precision geopotential model. The discrepancy between the values of heights in CS42 and WGS84 is in the range of -3.93 m and 0.31 m.

2014 ◽  
Vol 522-524 ◽  
pp. 1207-1210
Author(s):  
Qing Wu Meng ◽  
Lu Meng

Using three dimensional coordinate transformation model with 7 parameters the coordinate transformation parameters are solved. Comparing the coordinates of the kilometer grid point on topographic maps in Beijing54, Xian80 and Urban Independent Coordinate System with the observation coordinates of same point inCGCS2000, Through watching their coordinate changes the moving changes regularity on topographic maps are discovered between Beijing54 and CGCS2000, between Xian 80 and CGCS2000, Urban Independent Coordinate System and CGCS2000


Author(s):  
Fazilova D.Sh ◽  
Magdiev H.N ◽  
Halimov B.T

In this paper, a study of the accuracy of obtaining normal heights using Global Geopotential Models EGM2008, EIGEN-6C4, GECO and GNSS measurements for the territory of the Kashkadarya region in Uzbekistan is carried out. The heights obtained by the classical leveling in Baltic reference system were used as reference data. EIGEN-6C4 and GECO models were recommended for definition a preliminary quasi  geoid model of the region. KEYWORDS: GNSS and classical leveling, Global Geopotential Model, height anomaly


1975 ◽  
Vol 26 ◽  
pp. 87-92
Author(s):  
P. L. Bender

AbstractFive important geodynamical quantities which are closely linked are: 1) motions of points on the Earth’s surface; 2)polar motion; 3) changes in UT1-UTC; 4) nutation; and 5) motion of the geocenter. For each of these we expect to achieve measurements in the near future which have an accuracy of 1 to 3 cm or 0.3 to 1 milliarcsec.From a metrological point of view, one can say simply: “Measure each quantity against whichever coordinate system you can make the most accurate measurements with respect to”. I believe that this statement should serve as a guiding principle for the recommendations of the colloquium. However, it also is important that the coordinate systems help to provide a clear separation between the different phenomena of interest, and correspond closely to the conceptual definitions in terms of which geophysicists think about the phenomena.In any discussion of angular motion in space, both a “body-fixed” system and a “space-fixed” system are used. Some relevant types of coordinate systems, reference directions, or reference points which have been considered are: 1) celestial systems based on optical star catalogs, distant galaxies, radio source catalogs, or the Moon and inner planets; 2) the Earth’s axis of rotation, which defines a line through the Earth as well as a celestial reference direction; 3) the geocenter; and 4) “quasi-Earth-fixed” coordinate systems.When a geophysicists discusses UT1 and polar motion, he usually is thinking of the angular motion of the main part of the mantle with respect to an inertial frame and to the direction of the spin axis. Since the velocities of relative motion in most of the mantle are expectd to be extremely small, even if “substantial” deep convection is occurring, the conceptual “quasi-Earth-fixed” reference frame seems well defined. Methods for realizing a close approximation to this frame fortunately exist. Hopefully, this colloquium will recommend procedures for establishing and maintaining such a system for use in geodynamics. Motion of points on the Earth’s surface and of the geocenter can be measured against such a system with the full accuracy of the new techniques.The situation with respect to celestial reference frames is different. The various measurement techniques give changes in the orientation of the Earth, relative to different systems, so that we would like to know the relative motions of the systems in order to compare the results. However, there does not appear to be a need for defining any new system. Subjective figures of merit for the various system dependon both the accuracy with which measurements can be made against them and the degree to which they can be related to inertial systems.The main coordinate system requirement related to the 5 geodynamic quantities discussed in this talk is thus for the establishment and maintenance of a “quasi-Earth-fixed” coordinate system which closely approximates the motion of the main part of the mantle. Changes in the orientation of this system with respect to the various celestial systems can be determined by both the new and the conventional techniques, provided that some knowledge of changes in the local vertical is available. Changes in the axis of rotation and in the geocenter with respect to this system also can be obtained, as well as measurements of nutation.


1975 ◽  
Vol 26 ◽  
pp. 21-26

An ideal definition of a reference coordinate system should meet the following general requirements:1. It should be as conceptually simple as possible, so its philosophy is well understood by the users.2. It should imply as few physical assumptions as possible. Wherever they are necessary, such assumptions should be of a very general character and, in particular, they should not be dependent upon astronomical and geophysical detailed theories.3. It should suggest a materialization that is dynamically stable and is accessible to observations with the required accuracy.


1986 ◽  
Vol 8 ◽  
pp. 141-145 ◽  
Author(s):  
K.C. Partington ◽  
C.G. Rapley

Satellite-borne, radar altimeters have already demonstrated an ability to produce high-precision, topographic maps of the ice sheets. Seasat operated in a tracking mode, designed for use over oceans, but successfully tracked much of the flatter regions of the ice sheet to ± 72° latitude. ERS-1 will extend coverage to ± 82° latitude and will be equipped with an ocean mode similar to that of Seasat and an ice mode designed to permit tracking of the steeper, peripheral regions. The ocean mode will be used over the flatter regions, because of its greater precision.Altimeter performance over the ice sheets has been investigated through a study of Seasat tracking behaviour and the use of an altimeter performance simulator, with a view to assessing the likely performance of ERS-1 and the design of improved tracking systems. Analysis of Seasat data shows that lock was frequently lost, as a result of possessing a non-linear height error signal over the width of the range window. Having lost lock, the tracker frequently failed to transfer rapidly and effectively to track mode. Use of the altimeter performance simulator confirms many of the findings from Seasat data and it is being used to facilitate data interpretation and mapping, through the modelling of waveform sequence.


2018 ◽  
Vol 939 (9) ◽  
pp. 2-9
Author(s):  
V.V. Popadyev

The author analyzes the arguments in the report by Robert Kingdon, Petr Vanicek and Marcelo Santos “The shape of the quasigeoid” (IX Hotin-Marussi Symposium on Theoretical Geodesy, Italy, Rome, June 18 June 22, 2018), which presents the criticisms for the basic concepts of Molodensky’s theory, the normal height and height anomaly of the point on the earth’s surface, plotted on the reference ellipsoid surface and forming the surface of a quasigeoid. The main advantages of the system of normal heights, closely related to the theory of determining the external gravitational field and the Earth’s surface, are presented. Despite the fact that the main advantage of Molodensky’s theory is the rigorous determining the anomalous potential on the Earth’s surface, the use of the system of normal heights can be shown and proved separately. To do this, a simple example is given, where the change of marks along the floor of a strictly horizontal tunnel in the mountain massif is a criterion for the convenience of the system. In this example, the orthometric heights show a change of 3 cm per 1.5 km, which will require corrections to the measured elevations due the transition to a system of orthometric heights. The knowledge of the inner structure of the rock mass is also necessary. It should be noted that the normal heights are constant along the tunnel and behave as dynamic ones and there is no need to introduce corrections. Neither the ellipsoid nor the quasi-geoid is a reference for normal heights, because so far the heights are referenced to initial tide gauge. The points of the earth’s surface are assigned a height value; this is similar to the ideas of prof. L. V. Ogorodova about the excessive emphasis on the concept of quasigeoid. A more general term is the height anomaly that exists both for points on the Earth’s surface and at a distance from it and decreases together with an attenuation of the anomalous field.


2020 ◽  
Vol 962 (8) ◽  
pp. 24-37
Author(s):  
V.E. Tereshchenko

The article suggests a technique for relation global kinematic reference system and local static realization of global reference system by regional continuously operated reference stations (CORS) network. On the example of regional CORS network located in the Novosibirsk Region (CORS NSO) the relation parameters of the global reference system WGS-84 and its local static realization by CORS NSO network at the epoch of fixing stations coordinates in catalog are calculated. With the realization of this technique, the main parameters to be determined are the speed of displacement one system center relativly to another and the speeds of rotation the coordinate axes of one system relatively to another, since the time evolution of most stations in the Russian Federation is not currently provided. The article shows the scale factor for relation determination of coordinate systems is not always necessary to consider. The technique described in the article also allows detecting the errors in determining the coordinates of CORS network in global coordinate system and compensate for them. A systematic error of determining and fixing the CORS NSO coordinates in global coordinate system was detected. It is noted that the main part of the error falls on the altitude component and reaches 12 cm. The proposed technique creates conditions for practical use of the advanced method Precise Point Positioning (PPP) in some regions of the Russian Federation. Also the technique will ensure consistent PPP method results with the results of the most commonly used in the Russian Federation other post-processing methods of high-precision positioning.


1990 ◽  
Vol 141 ◽  
pp. 99-110
Author(s):  
Han Chun-Hao ◽  
Huang Tian-Yi ◽  
Xu Bang-Xin

The concept of reference system, reference frame, coordinate system and celestial sphere in a relativistic framework are given. The problems on the choice of celestial coordinate systems and the definition of the light deflection are discussed. Our suggestions are listed in Sec. 5.


2021 ◽  
Vol 22 (4) ◽  
pp. 217-224
Author(s):  
Yu. N. Chelnokov ◽  
A. V. Molodenkov

For the functioning of algorithms of inertial orientation and navigation of strapdown inertial navigation system (SINS), it is necessary to conduct a mathematical initial alignment of SINS immediately before the operation of these algorithms. An efficient method of initial alignment (not calibration!) of SINS is the method of vector matching. Its essence is to determine the relative orientation of the instrument trihedron Y (related to the unit of SINS sensors) and the reference trihedron X according to the results of measuring the projections of at least two non-collinear vectors of the axes on both trihedrons. We address the estimation of the initial orientation of the object using the method of gyrocompassing, which is a form of vector matching method. This initial alignment method is based upon using the projections of the apparent acceleration vector a and the absolute angular velocity vector ω of the object in the coordinate systems X and Y. It is assumed that the three single-axis accelerometers and the three gyroscopes (generally speaking, the three absolute angular velocity sensors of any type), which measure the projections of the vectors a and ω, are installed along the axes of the instrument coordinate system Y. If the projections of the same vectors on the axes of the base coordinate system X are known, then it is possible to estimate the mutual orientation of X and Y trihedrons. We are solving the problem of the initial alignment of SINS for the case of a fixed base, when the accelerometers measure the projection gi (i = 1, 2, 3) of the gravity acceleration vector g, and the gyroscopes measure the projections u i of the vector u of angular velocity of Earth’s rotation on the body-fixed axes. The projections of the same vectors on the axes of the normal geographic coordinate system X are also estimated using the known formulas. The correlation between the projections of the vectors u and g in X and Y coordinate system is given by known quaternion relations. In these relations the unknown variable is the orientation quaternion of the object in the X coordinate system. By separating the scalar and vector parts in the equations, we obtain an overdetermined system of linear algebraic equations (SLAE), where the unknown variable is the finite rotation vector θ, which aligns the X and Y coordinate systems (it is assumed that there is no half-turn of the X coordinate system with respect to the Y coordinate system). Thus, the mathematical formulation of the problem of SINS initial alignment by means of gyrocompassing is to find the unknown vector θ from the derived overdetermined SLAE. When finding the vector θ directly from the SLAE (algorithm 1) and data containing measurement errors, the components of the vector q are also determined with errors (especially the component of the vector θ, which is responsible for the course ψ of an object). Depending on the pre-defined in the course of numerical experiments values of heading ψ, roll ϑ, pitch γ angles of an object and errors of the input data (measurements of gyroscopes and accelerometers), the errors of estimating the heading angle Δψ of an object may in many cases differ from the errors of estimating the roll Δϑ and pitch Δγ angles by two-three (typically) or more orders. Therefore, in order to smooth out these effects, we have used the A. N. Tikhonov regularization method (algorithm 2), which consists of multiplying the left and right sides of the SLAE by the transposed matrix of coefficients for that SLAE, and adding the system regularization parameter to the elements of the main diagonal of the coefficient matrix for the newly derived SLAE (if necessary, depending on the value of the determinant of this matrix). Analysis of the results of the numerical experiments on the initial alignment shows that the errors of estimating the object’s orientation angles Δψ, Δϑ, Δγ using algorithm 2 are more comparable (more consistent) regarding their order.


Sign in / Sign up

Export Citation Format

Share Document