scholarly journals DAMAGE INSPECTION ON PIER OF SG. PERAK RESERVOIR BRIDGE USING ACCELEROMETER AND GNSS

2021 ◽  
Vol 6 (24) ◽  
pp. 265-277
Author(s):  
Masreta Mohd ◽  
Othman Zainon ◽  
Zulkifli Majid ◽  
Abdul Wahid Rasib

Sg. Perak Reservoir Bridge where it is commonly known to be heavily utilized by heavy vehicles on daily basis. Therefore, the practices of inspection and maintenance of this bridge are essential tasks in prolonging its lifespan especially as it is utilized heavily with heavy vehicles. The act of inspecting damage that occurred at a pier is done through the use of technical equipment as an additional method invalidating visual inspection obtained through vibration reading, and validating in inspection reading analysis as additional information to confirm for any structural damages. The use of using Global Navigation Satellite System (GNSS) can be employed for continuous monitoring and the use of accelerometers, which are components of the ambient vibration method, served to be an integral part of the information obtained on the changes in the dynamic structural features detected. The vibration measurement can display natural frequencies that depended on the weight, material, pressure, and tension as well as the geometry of the object. This data obtained can therefore be used to furnish additional information on the capacity and condition of the structure. The results indicated that maximum vibration on two piers inspection are recorded at 53.7 mm/s2 and 49.6 mm/s2 using an Accelerometer indeed heavy vehicles traffic flow is a factor in influencing bridge vibration by traffic transport diversity between west and east lanes of both sides of the bridge.

2020 ◽  
Vol 10 ◽  
pp. 42
Author(s):  
Anna Belehaki ◽  
Ioanna Tsagouri ◽  
David Altadill ◽  
Estefania Blanch ◽  
Claudia Borries ◽  
...  

The main objective of the TechTIDE project (warning and mitigation technologies for travelling ionospheric disturbances effects) is the development of an identification and tracking system for travelling ionospheric disturbances (TIDs) which will issue warnings of electron density perturbations over large world regions. The TechTIDE project has put in operation a real-time warning system that provides the results of complementary TID detection methodologies and many potential drivers to help users assess the risks and develop mitigation techniques tailored to their applications. The TechTIDE methodologies are able to detect in real time activity caused by both large-scale and medium-scale TIDs and characterize background conditions and external drivers, as an additional information required by the users to assess the criticality of the ongoing disturbances in real time. TechTIDE methodologies are based on the exploitation of data collected in real time from Digisondes, Global Navigation Satellite System (GNSS) receivers and Continuous Doppler Sounding System (CDSS) networks. The results are obtained and provided to users in real time. The paper presents the achievements of the project and discusses the challenges faced in the development of the final TechTIDE warning system.


2013 ◽  
Vol 44 (2s) ◽  
Author(s):  
Raimondo Gallo ◽  
Stefano Grigolato ◽  
Raffaele Cavalli ◽  
Fabrizio Mazzetto

The first results of a new approach for implementing operational monitoring tool to control the performance of forest mechanisation chains are proposed and discussed. The solution is based on Global Navigation Satellite System (GNSS) tools that are the core of a datalogging system that, in combination with a specific inference-engine, is able to analyse process times, work distances, forward speeds, vehicle tracking and number of working cycles in forest operations. As a consequence the operational monitoring control methods could provide an evaluation of the efficiency of the investigated forest operations. The study has monitored the performance of a tower yarder with crane and processor-head, during logging operations. The field surveys consisted on the installation of the GNSS device directly on the forest equipment for monitoring its movements. Simultaneously the field survey considered the integration of the GNSS information with a time study of work elements based on the continuous time methods supported by a time study board. Additionally, where possible, the onboard computer of the forest machine was also used in order to obtain additional information to be integrated to the GNSS data and the time study. All the recorded GNSS data integrated with the work elements study were thus post-processed through GIS analysis. The preliminary overview about the application of this approach on harvesting operations has permitted to assess a good feasibility of the use of GNSS in the relief of operative times in high mechanised forest chains. Results showed an easy and complete identification of the different operative cycles and elementary operations phases, with a maximum difference between the two methodologies of 10.32%. The use of GNSS installed on forest equipment, integrated with the inferenceengine and also with an interface for data communication or data storage, will permit an automatic or semi-automatic operational monitoring, improving the quantity of data and reducing the engagement of the surveyor.


2020 ◽  
Vol 12 (21) ◽  
pp. 3487
Author(s):  
Christoforos Benetatos ◽  
Giulia Codegone ◽  
Carmela Ferraro ◽  
Andrea Mantegazzi ◽  
Vera Rocca ◽  
...  

The paper presents a multi-physics investigation of the ground movements related to the cyclical and seasonal injection and withdrawal of natural gas in/from a depleted reservoir located in the Po Plain area, Italy. Interferometric Synthetic Aperture Radar (InSAr) data (from 2003) and Global Navigation Satellite System (GNSS) data (from 2008) provided a full and coherent panorama of almost two decades of ground movement in the monitored area (more extended than the field boundary). The analysis of the acquired millimetric-scale movements together with the detailed geological analysis, both at reservoir and at regional scale, represents the focal point for understanding the investigated phenomena. Based on this information, a fully integrated and multidisciplinary geological, fluid-flow and geomechanical numerical modeling approach was developed to reproduce the main geometrical and structural features of the involved formations together with the poromechanics processes induced by the storage operations. The main achievement of the adopted methodology is a deep knowledge of the system and the involved processes, which is mandatory for the safety of the urbanized areas and the effective management of the underground resources.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Zhen Yu ◽  
Jianguo Yu ◽  
Xiaoying Ran ◽  
Chenhua Zhu

This study proposes a novel square-circle structure fractal multibroadband planar antenna, similar to an ancient Chinese coin-like structure, for second generation (2G), third generation (3G), fourth generation (4G), WLAN, and navigation wireless applications. The device is based on the principles and structural features of conventional monopole antenna elements, combined with the advantages of microstrip antennas and fractal geometry. A fractal method was presented for circular nested square slotted structures, similar to an ancient Chinese copper coin. The proposed antenna adapted five iterations on a fractal structure radiator, which covers more than ten mobile applications in three broad frequency bands with a bandwidth of 70% (1.43–2.97 GHz) for DCS1800, TD-SCDMA, WCDMA, CDMA2000, LTE33-41, Bluetooth, GPS (Global Positioning System), BDS (BeiDou Navigation Satellite System), GLONSS (Global Navigation Satellite System), GALILEO (Galileo Satellite Navigation System), and WLAN frequency bands, 16.32% (3.32–3.91 GHz) for LTE42, LTE43, and WiMAX frequency bands, and 10.92% (4.85–5.41 GHz) for WLAN frequency band. The proposed antenna was fabricated on a 1.6 mm thick G10/FR4 substrate with a dielectric constant of 4.4 and a size of 88.5 × 60 mm2. The measurement results reveal that the omnidirectional radiation patterns achieve a gain of 1.16–3.75 dBi and an efficiency of 40–72%. The good agreement between the measurement results and simulation validates the proposed design approach and satisfies the requirements for various wireless applications.


2017 ◽  
Vol 2017 ◽  
pp. 1-9
Author(s):  
Mehrez Zribi ◽  
Erwan Motte ◽  
Pascal Fanise ◽  
Walid Zouaoui

The aim of this research is to analyze the potential use of Global Navigation Satellite System (GNSS) signals for the monitoring of in situ vegetation characteristics. An instrument, based on the use of a pair of low-cost receivers and antennas, providing continuous measurements of all the available Global Positioning System (GPS) satellite signals is proposed for the determination of signal attenuation caused by a sunflower cover. Experimental campaigns with this instrument, combined with ground truth measurements of the vegetation, were performed over a nonirrigated sunflower test field for a period of more than two months, corresponding to a significant portion of the vegetation cycle. A method is proposed for the analysis of the signal attenuation data as a function of elevation and azimuth angles. A high correlation is observed between the vegetation’s water content and the GPS signals attenuation, and an empirical modeling is tested for the retrieval of signal behavior as a function of vegetation water content (VWC). The VWC was estimated from GNSS signals on a daily basis, over the full length of the study period.


2021 ◽  
Vol 13 (22) ◽  
pp. 4561
Author(s):  
Wentao Yang ◽  
Fan Gao ◽  
Tianhe Xu ◽  
Nazi Wang ◽  
Jinsheng Tu ◽  
...  

Flood is a kind of natural disaster that is extremely harmful and occurs frequently. To reduce losses caused by the hazards, it is urgent to monitor the disaster area timely and carry out rescue operations efficiently. However, conventional space observers cannot achieve sufficient spatiotemporal resolution. As spaceborne GNSS-R technique can observe the Earth’s surface with high temporal and spatial resolutions; and it is expected to provide a new solution to the problem of flood hazards. During 19–21 July 2021, Henan province, China, suffered a catastrophic flood and urban waterlogging. In order to test the feasibility of flood disaster monitoring on a daily basis by using GNSS-R observations, the CYGNSS (Cyclone Global Navigation Satellite System) Level 1 Science Data were processed for a few days before and after the flood to obtain surface reflectivity by correcting the analog power. Afterwards, the flood was monitored and mapped daily based on the analysis of changes in surface reflectivity from spaceborne GNSS-R mission. The results were evaluated based on the image from MODIS (Moderate Resolution Imaging Spectroradiometer) data, and compared with the observations of SMAP (Soil Moisture Active Passive) in the same period. The results show that the area with high CYGNSS reflectivity corresponds to the flooded area monitored by MODIS, and it is also in high agreement with SMAP. Moreover, CYGNSS can achieve more detailed mapping and quantification of the inundated area and the duration of the flood, respectively, in line with the specific situation of the flood. Thus, spaceborne GNSS-R technology can be used as a method to monitor floods with high temporal resolution.


Author(s):  
P. Garieri ◽  
M. Riboloni ◽  
G. Forlani ◽  
R. Roncella

Abstract. Traditionally, data co-registration of survey epochs in photogrammetry relied on Ground Control Points (GCP) to keep the reference system unchanged. In the last years, Unmanned Aerial Systems (UAV) are increasingly used in photogrammetric environmental monitoring. The diffusion of affordable UAV platforms equipped with GNSS (Global Navigation Satellite System) centimetre-grade receivers might reduce, but not eliminate, the need for GCP. Conversely, if GNSS-assisted orientation cannot be used or if additional ground control and reliability checks are required, alternatives to repeated GCP survey have been proposed, taking advantage of Structure from Motion (SfM) photogrammetry. In particular, co-registering different epochs image blocks together, identifying corresponding features, has been demonstrated as a viable and efficient approach. In this paper four different strategies easily implementable in a generic commercial photogrammetric software are presented and compared considering three different test sites in Italy subject to different amounts of environmental changes. The influence of the amount and distribution of inter-epoch corresponding points on the accuracy of the reconstruction is investigated. The results show that some of the tested strategies obtains very good results and can be used (although not needed) also in RTK centimetre-grade UAV surveys, leveraging the additional information coming from previous epochs survey to actually increase the survey accuracy and reliability.


2018 ◽  
Vol 940 (10) ◽  
pp. 2-6
Author(s):  
J.A. Younes ◽  
M.G. Mustafin

The issue of calculating the plane rectangular coordinates using the data obtained by the satellite observations during the creation of the geodetic networks is discussed in the article. The peculiarity of these works is in conversion of the coordinates into the Mercator projection, while the plane coordinate system on the base of Gauss-Kruger projection is used in Russia. When using the technology of global navigation satellite system, this task is relevant for any point (area) of the Earth due to a fundamentally different approach in determining the coordinates. The fact is that satellite determinations are much more precise than the ground coordination methods (triangulation and others). In addition, the conversion to the zonal coordinate system is associated with errors; the value at present can prove to be completely critical. The expediency of using the Mercator projection in the topographic and geodetic works production at low latitudes is shown numerically on the basis of model calculations. To convert the coordinates from the geocentric system with the Mercator projection, a programming algorithm which is widely used in Russia was chosen. For its application under low-latitude conditions, the modification of known formulas to be used in Saudi Arabia is implemented.


2021 ◽  
Vol 13 (14) ◽  
pp. 8054
Author(s):  
Artur Janowski ◽  
Rafał Kaźmierczak ◽  
Cezary Kowalczyk ◽  
Jakub Szulwic

Knowing the exact number of fruits and trees helps farmers to make better decisions in their orchard production management. The current practice of crop estimation practice often involves manual counting of fruits (before harvesting), which is an extremely time-consuming and costly process. Additionally, this is not practicable for large orchards. Thanks to the changes that have taken place in recent years in the field of image analysis methods and computational performance, it is possible to create solutions for automatic fruit counting based on registered digital images. The pilot study aims to confirm the state of knowledge in the use of three methods (You Only Look Once—YOLO, Viola–Jones—a method based on the synergy of morphological operations of digital imagesand Hough transformation) of image recognition for apple detecting and counting. The study compared the results of three image analysis methods that can be used for counting apple fruits. They were validated, and their results allowed the recommendation of a method based on the YOLO algorithm for the proposed solution. It was based on the use of mass accessible devices (smartphones equipped with a camera with the required accuracy of image acquisition and accurate Global Navigation Satellite System (GNSS) positioning) for orchard owners to count growing apples. In our pilot study, three methods of counting apples were tested to create an automatic system for estimating apple yields in orchards. The test orchard is located at the University of Warmia and Mazury in Olsztyn. The tests were carried out on four trees located in different parts of the orchard. For the tests used, the dataset contained 1102 apple images and 3800 background images without fruits.


2021 ◽  
pp. 1-16
Author(s):  
Hong Hu ◽  
Xuefeng Xie ◽  
Jingxiang Gao ◽  
Shuanggen Jin ◽  
Peng Jiang

Abstract Stochastic models are essential for precise navigation and positioning of the global navigation satellite system (GNSS). A stochastic model can influence the resolution of ambiguity, which is a key step in GNSS positioning. Most of the existing multi-GNSS stochastic models are based on the GPS empirical model, while differences in the precision of observations among different systems are not considered. In this paper, three refined stochastic models, namely the variance components between systems (RSM1), the variances of different types of observations (RSM2) and the variances of observations for each satellite (RSM3) are proposed based on the least-squares variance component estimation (LS-VCE). Zero-baseline and short-baseline GNSS experimental data were used to verify the proposed three refined stochastic models. The results show that, compared with the traditional elevation-dependent model (EDM), though the proposed models do not significantly improve the ambiguity resolution success rate, the positioning precision of the three proposed models has been improved. RSM3, which is more realistic for the data itself, performs the best, and the precision at elevation mask angles 20°, 30°, 40°, 50° can be improved by 4⋅6%, 7⋅6%, 13⋅2%, 73⋅0% for L1-B1-E1 and 1⋅1%, 4⋅8%, 16⋅3%, 64⋅5% for L2-B2-E5a, respectively.


Sign in / Sign up

Export Citation Format

Share Document