scholarly journals Multidisciplinary Analysis of Ground Movements: An Underground Gas Storage Case Study

2020 ◽  
Vol 12 (21) ◽  
pp. 3487
Author(s):  
Christoforos Benetatos ◽  
Giulia Codegone ◽  
Carmela Ferraro ◽  
Andrea Mantegazzi ◽  
Vera Rocca ◽  
...  

The paper presents a multi-physics investigation of the ground movements related to the cyclical and seasonal injection and withdrawal of natural gas in/from a depleted reservoir located in the Po Plain area, Italy. Interferometric Synthetic Aperture Radar (InSAr) data (from 2003) and Global Navigation Satellite System (GNSS) data (from 2008) provided a full and coherent panorama of almost two decades of ground movement in the monitored area (more extended than the field boundary). The analysis of the acquired millimetric-scale movements together with the detailed geological analysis, both at reservoir and at regional scale, represents the focal point for understanding the investigated phenomena. Based on this information, a fully integrated and multidisciplinary geological, fluid-flow and geomechanical numerical modeling approach was developed to reproduce the main geometrical and structural features of the involved formations together with the poromechanics processes induced by the storage operations. The main achievement of the adopted methodology is a deep knowledge of the system and the involved processes, which is mandatory for the safety of the urbanized areas and the effective management of the underground resources.

2019 ◽  
Vol 11 (4) ◽  
pp. 394 ◽  
Author(s):  
Gregorio Farolfi ◽  
Aldo Piombino ◽  
Filippo Catani

We present a detailed map of ground movement in Italy derived from the combination of the Global Navigation Satellite System (GNSS) and Satellite Synthetic Aperture Radar (SAR) interferometry. These techniques are two of the most used space geodetic techniques to study Earth surface deformation. The above techniques provide displacements with respect to different components of the ground point position; GNSSs use the geocentric International Terrestrial Reference System 1989 (ITRS89), whereas the satellite SAR interferometry components are identified by the Lines of Sight (LOSs) between a satellite and ground points. Moreover, SAR interferometry is a differential technique, and for that reason, displacements have no absolute reference datum. We performed datum alignment of InSAR products using precise velocity fields derived from GNSS permanent stations. The result is a coherent ground velocity field with detailed boundaries of velocity patterns that provide new information about the complex geodynamics involved on the Italian peninsula and about local movements.


2021 ◽  
Vol 55 ◽  
pp. 13-22
Author(s):  
Pierre Bosser ◽  
Olivier Bock

Abstract. A ground-based network of more than 1200 Global Navigation Satellite System (GNSS) Continuously Operating Reference Stations (CORS) was analysed using GIPSY-OASIS II software package for the documentation of time and space variations of water vapor in atmosphere during the North Atlantic Waveguide and Downstream impact EXperiment (NAWDEX) during fall 2016. The network extends throughout the North Atlantic, from the Caribbeans to Morocco through Greenland. This paper presents the methodology used for GNSS data processing, screening, and conversion of Zenith Tropospheric Delay (ZTD) estimates to Integrated Water Vapor content (IWV) using surface parameters from reanalysis. The retrieved IWV are used to evaluate the European Centre for Medium-Range Weather Forecasts (ECMWF) reanalyses ERAI and ERA5. ERA5 shows an overall improvement over ERAI in representing the spatial and temporal variability of IWV over the study area. The mean bias is decreased from 0.31±0.63 to 0.19±0.56 kg m−2 (mean ±1σ over all stations) and the standard deviation reduced from 2.17±0.67 to 1.64±0.53 kg m−2 combined with a slight improvement in correlation coefficient from 0.95 to 0.97. At regional scale, both reanalyses show a general wet bias at mid and northern latitudes but a dry bias in the Caribbeans. We hypothesize this results from the different nature of data being assimilated over the tropical oceans. This GNSS IWV data set is intended to be used for a better description of the high impact weather events that occurred during the NAWDEX experiment.


2020 ◽  
Vol 10 (23) ◽  
pp. 8599
Author(s):  
Vivek Agarwal ◽  
Amit Kumar ◽  
Rachel L. Gomes ◽  
Stuart Marsh

Groundwater-induced land movement can cause damage to property and resources, thus its monitoring is very important for the safety and economics of a city. London is a heavily built-up urban area and relies largely on its groundwater resource and thus poses the threat of land subsidence. Interferometric Synthetic Aperture Radar (InSAR) can facilitate monitoring of land movement and Gravity Recovery and Climate Experiment (GRACE) gravity anomalies can facilitate groundwater monitoring. For London, no previous study has investigated groundwater variations and related land movement using InSAR and GRACE together. In this paper, we used ENVISAT ASAR C-band SAR images to obtain land movement using Persistent Scatterer InSAR (PSInSAR) technique and GRACE gravity anomalies to obtain groundwater variations between December 2002 and December 2010 for central London. Both experiments showed long-term, decreasing, complex, non-linear patterns in the spatial and temporal domain. The land movement values varied from −6 to +6 mm/year, and their reliability was validated with observed Global Navigation Satellite System (GNSS) data, by conducting a two-sample t-test. The average groundwater loss estimated from GRACE was found to be 9.003 MCM/year. The ground movement was compared to observed groundwater values obtained from various boreholes around central London. It was observed that when large volumes of groundwater is extracted then it leads to land subsidence, and when groundwater is recharged then surface uplift is witnessed. The results demonstrate that InSAR and GRACE complement each other and can be an excellent source of monitoring groundwater for hydrologists.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Zhen Yu ◽  
Jianguo Yu ◽  
Xiaoying Ran ◽  
Chenhua Zhu

This study proposes a novel square-circle structure fractal multibroadband planar antenna, similar to an ancient Chinese coin-like structure, for second generation (2G), third generation (3G), fourth generation (4G), WLAN, and navigation wireless applications. The device is based on the principles and structural features of conventional monopole antenna elements, combined with the advantages of microstrip antennas and fractal geometry. A fractal method was presented for circular nested square slotted structures, similar to an ancient Chinese copper coin. The proposed antenna adapted five iterations on a fractal structure radiator, which covers more than ten mobile applications in three broad frequency bands with a bandwidth of 70% (1.43–2.97 GHz) for DCS1800, TD-SCDMA, WCDMA, CDMA2000, LTE33-41, Bluetooth, GPS (Global Positioning System), BDS (BeiDou Navigation Satellite System), GLONSS (Global Navigation Satellite System), GALILEO (Galileo Satellite Navigation System), and WLAN frequency bands, 16.32% (3.32–3.91 GHz) for LTE42, LTE43, and WiMAX frequency bands, and 10.92% (4.85–5.41 GHz) for WLAN frequency band. The proposed antenna was fabricated on a 1.6 mm thick G10/FR4 substrate with a dielectric constant of 4.4 and a size of 88.5 × 60 mm2. The measurement results reveal that the omnidirectional radiation patterns achieve a gain of 1.16–3.75 dBi and an efficiency of 40–72%. The good agreement between the measurement results and simulation validates the proposed design approach and satisfies the requirements for various wireless applications.


2021 ◽  
Vol 6 (24) ◽  
pp. 265-277
Author(s):  
Masreta Mohd ◽  
Othman Zainon ◽  
Zulkifli Majid ◽  
Abdul Wahid Rasib

Sg. Perak Reservoir Bridge where it is commonly known to be heavily utilized by heavy vehicles on daily basis. Therefore, the practices of inspection and maintenance of this bridge are essential tasks in prolonging its lifespan especially as it is utilized heavily with heavy vehicles. The act of inspecting damage that occurred at a pier is done through the use of technical equipment as an additional method invalidating visual inspection obtained through vibration reading, and validating in inspection reading analysis as additional information to confirm for any structural damages. The use of using Global Navigation Satellite System (GNSS) can be employed for continuous monitoring and the use of accelerometers, which are components of the ambient vibration method, served to be an integral part of the information obtained on the changes in the dynamic structural features detected. The vibration measurement can display natural frequencies that depended on the weight, material, pressure, and tension as well as the geometry of the object. This data obtained can therefore be used to furnish additional information on the capacity and condition of the structure. The results indicated that maximum vibration on two piers inspection are recorded at 53.7 mm/s2 and 49.6 mm/s2 using an Accelerometer indeed heavy vehicles traffic flow is a factor in influencing bridge vibration by traffic transport diversity between west and east lanes of both sides of the bridge.


2020 ◽  
Author(s):  
Leonie Bernet ◽  
Elmar Brockmann ◽  
Thomas von Clarmann ◽  
Niklaus Kämpfer ◽  
Emmanuel Mahieu ◽  
...  

Abstract. Vertically integrated water vapour (IWV) is expected to increase globally in a warming climate. To determine whether IWV increases as expected on a regional scale, we present IWV trends in Switzerland from ground-based remote sensing techniques and reanalysis models, considering data for the time period 1995 to 2018. We estimate IWV trends from a ground-based microwave radiometer in Bern, from a Fourier Transform Infrared (FTIR) spectrometer at Jungfraujoch, from reanalysis data (ERA5 and MERRA-2) and from Swiss ground-based Global Navigation Satellite System (GNSS) stations. Using a straightforward trend method, we account for jumps in the GNSS data, which are highly sensitive to instrumental changes. We found that IWV generally increased by 2 to 5 % per decade, with deviating trends at some GNSS stations. Trends were significantly positive at 23 % of all GNSS stations, which often lie at higher altitudes (between 850 and 1700 m above sea level). Our results further show that IWV in Bern scales to air temperature as expected (except in winter), but the IWV–temperature relation based on reanalysis data in whole Switzerland is not everywhere clear. In addition to our positive IWV trends, we found that the radiometer in Bern agrees within 5 % with GNSS and reanalyses. At the high altitude station Jungfraujoch, we found a mean difference of 0.26 mm (15 %) between the FTIR and coincident GNSS data, improving to 4 % after an antenna update in 2016. In general, we showed that ground-based GNSS data are highly valuable for climate monitoring, given that the data have been homogeneously reprocessed and that instrumental changes are accounted for. We found a response of IWV to rising temperature in Switzerland, which is relevant for projected changes in local cloud and precipitation processes.


Author(s):  
Michael D. Henschel ◽  
Benjamin Deschamps ◽  
Gillian Robert ◽  
Rick Gailing

This paper presents a time history of 12 years of surface deformation in the Belridge Oil Field, California, USA from an InSAR analysis using multiple satellites. The time series reveals deformation rates as high as 80 cm/yr at times with a maximum overall deformation of 3.92 m. The use of multiple satellites and multiple observation modes provided deformation measurements at a frequency as high as every two days from the RADARSAT-1 and RADARSAT-2 satellites. The InSAR derived estimates of motion are shown with respect to a pipeline segment that transects the Belridge Oil Field. The use of wide area ground movement monitoring provides both high resolution (3 m on the ground) and high precision (deformation measurements to ± 1 mm). The observed ground motion is validated with collocated measurements from a set of Global Navigation Satellite System units installed for a period in 2012. The long term, validated time series of observations provide a unique data set with which to compare pipeline incidents. The correlation between incidents and ground movement can help estimate the pipeline state as related to stress and strain from ground displacement.


2020 ◽  
Vol 20 (19) ◽  
pp. 11223-11244 ◽  
Author(s):  
Leonie Bernet ◽  
Elmar Brockmann ◽  
Thomas von Clarmann ◽  
Niklaus Kämpfer ◽  
Emmanuel Mahieu ◽  
...  

Abstract. Vertically integrated water vapour (IWV) is expected to increase globally in a warming climate. To determine whether IWV increases as expected on a regional scale, we present IWV trends in Switzerland from ground-based remote sensing techniques and reanalysis models, considering data for the time period 1995 to 2018. We estimate IWV trends from a ground-based microwave radiometer in Bern, from a Fourier transform infrared (FTIR) spectrometer at Jungfraujoch, from reanalysis data (ERA5 and MERRA-2) and from Swiss ground-based Global Navigation Satellite System (GNSS) stations. Using a straightforward trend method, we account for jumps in the GNSS data, which are highly sensitive to instrumental changes. We found that IWV generally increased by 2 % per decade to 5 % per decade, with deviating trends at some GNSS stations. Trends were significantly positive at 17 % of all GNSS stations, which often lie at higher altitudes (between 850 and 1650 m above sea level). Our results further show that IWV in Bern scales to air temperature as expected (except in winter), but the IWV–temperature relation based on reanalysis data in the whole of Switzerland is not clear everywhere. In addition to our positive IWV trends, we found that the radiometer in Bern agrees within 5 % with GNSS and reanalyses. At the Jungfraujoch high-altitude station, we found a mean difference of 0.26 mm (15 %) between the FTIR and coincident GNSS data, improving to 4 % after an antenna update in 2016. In general, we showed that ground-based GNSS data are highly valuable for climate monitoring, given that the data have been homogeneously reprocessed and that instrumental changes are accounted for. We found a response of IWV to rising temperature in Switzerland, which is relevant for projected changes in local cloud and precipitation processes.


2018 ◽  
Vol 940 (10) ◽  
pp. 2-6
Author(s):  
J.A. Younes ◽  
M.G. Mustafin

The issue of calculating the plane rectangular coordinates using the data obtained by the satellite observations during the creation of the geodetic networks is discussed in the article. The peculiarity of these works is in conversion of the coordinates into the Mercator projection, while the plane coordinate system on the base of Gauss-Kruger projection is used in Russia. When using the technology of global navigation satellite system, this task is relevant for any point (area) of the Earth due to a fundamentally different approach in determining the coordinates. The fact is that satellite determinations are much more precise than the ground coordination methods (triangulation and others). In addition, the conversion to the zonal coordinate system is associated with errors; the value at present can prove to be completely critical. The expediency of using the Mercator projection in the topographic and geodetic works production at low latitudes is shown numerically on the basis of model calculations. To convert the coordinates from the geocentric system with the Mercator projection, a programming algorithm which is widely used in Russia was chosen. For its application under low-latitude conditions, the modification of known formulas to be used in Saudi Arabia is implemented.


2021 ◽  
Vol 13 (14) ◽  
pp. 8054
Author(s):  
Artur Janowski ◽  
Rafał Kaźmierczak ◽  
Cezary Kowalczyk ◽  
Jakub Szulwic

Knowing the exact number of fruits and trees helps farmers to make better decisions in their orchard production management. The current practice of crop estimation practice often involves manual counting of fruits (before harvesting), which is an extremely time-consuming and costly process. Additionally, this is not practicable for large orchards. Thanks to the changes that have taken place in recent years in the field of image analysis methods and computational performance, it is possible to create solutions for automatic fruit counting based on registered digital images. The pilot study aims to confirm the state of knowledge in the use of three methods (You Only Look Once—YOLO, Viola–Jones—a method based on the synergy of morphological operations of digital imagesand Hough transformation) of image recognition for apple detecting and counting. The study compared the results of three image analysis methods that can be used for counting apple fruits. They were validated, and their results allowed the recommendation of a method based on the YOLO algorithm for the proposed solution. It was based on the use of mass accessible devices (smartphones equipped with a camera with the required accuracy of image acquisition and accurate Global Navigation Satellite System (GNSS) positioning) for orchard owners to count growing apples. In our pilot study, three methods of counting apples were tested to create an automatic system for estimating apple yields in orchards. The test orchard is located at the University of Warmia and Mazury in Olsztyn. The tests were carried out on four trees located in different parts of the orchard. For the tests used, the dataset contained 1102 apple images and 3800 background images without fruits.


Sign in / Sign up

Export Citation Format

Share Document