Energy audit of pumps in industrial and municipal systems and labeling of the operational efficiency: systematic approach (part 2)

Author(s):  
В.Н. Фисенко

На основании системного подхода выработаны единые критерии оценки энергоэффективности работы насосов в реальных промышленных (коммунальных) системах с позиции экологичной эксплуатации в низкоуглеродной экономике. При этом учтен комплексный подход производителей насосов при тестовых испытаниях и разработчиков реальных систем с насосами при исследовательских и оптимизационных расчетах. Приведен пример оценки экологичной энергоэффективной работы насоса с переменной нагрузкой в коммунальной системе с изменяющейся во времени статической составляющей напора. Приведен пример типового отчета энергетического обследования, в основе которого: сформированная для насосов оценка по классам энергетической маркировки, для условий эксплуатации в системе, с произвольными профилями нагрузки; вычисляемая структура режимов расчетного цикла насоса с определением соотношения энергоэффективных и энергозатратных режимов эксплуатации, перерасхода энергопотребления и учета негативного воздействия на окружающую среду в виде объема выбросов парниковых газов в СО2-эквиваленте. Рассмотрен подход к совершенствованию механизма стимулирования потребителей насосов для осуществления энергосервисных контрактов по снижению энергоемкости индустриальных и коммунальных технологических процессов. On the basis of a systematic approach, uniform criteria have been developed for estimating the energy efficiency of pumps in real industrial (municipal) systems from the standpoint of environmentally friendly operation in a low-carbon economy. At the same time, the integrated approach of pump manufacturers in tests and designers of real systems with pumps in the process of research and optimization calculations was taken into account. An example is given of estimating the eco-friendly energy efficient operation of a variable-load pump in a municipal system with a time dependent static head component. An example of a typical report of an energy survey is presented based on: the estimation developed for pumps by energy labelling classes for operating conditions in the system, with arbitrary load profiles; a computable structure of the pump design cycle modes with determining the ratio of energy-efficient and energy-consuming operation modes, excess demand energy and taking into account the negative impact on the environment in the form of greenhouse gas emissions in CO2-equivalent. An approach to improving the incentive mechanism for pump operators for the implementation of energy service contracts to reduce the energy intensity of industrial and communal technological processes is considered.

Author(s):  
В.Н. Фисенко

На основании системного подхода выработаны единые критерии оценки энергоэффективности работы насосов в реальных промышленных (коммунальных) системах с позиции экологичной эксплуатации в низкоуглеродной экономике. При этом учтен комплексный подход производителей насосов при тестовых испытаниях и разработчиков реальных систем с насосами при исследовательских и оптимизационных расчетах. Приведен пример оценки экологичной энергоэффективной работы насоса с переменной нагрузкой в коммунальной системе с изменяющейся во времени статической составляющей напора. Приведен пример типового отчета энергетического обследования, в основе которого: сформированная для насосов оценка по классам энергетической маркировки, для условий эксплуатации в системе, с произвольными профилями нагрузки; вычисляемая структура режимов расчетного цикла насоса с определением соотношения энергоэффективных и энергозатратных режимов эксплуатации, перерасхода энергопотребления и учета негативного воздействия на окружающую среду в виде объема выбросов парниковых газов в СО2-эквиваленте. Рассмотрен подход к совершенствованию механизма стимулирования потребителей насосов для осуществления энергосервисных контрактов по снижению энергоемкости индустриальных и коммунальных технологических процессов. On the basis of a systematic approach, uniform criteria have been developed for estimating the energy efficiency of pumps in real industrial (municipal) systems from the standpoint of environmentally friendly operation in a low-carbon economy. At the same time, the integrated approach of pump manufacturers in tests and designers of real systems with pumps in the process of research and optimization calculations was taken into account. An example is given of estimating the eco-friendly energy efficient operation of a variable-load pump in a municipal system with a time dependent static head component. An example of a typical report of an energy survey is presented based on: the estimation developed for pumps by energy labelling classes for operating conditions in the system, with arbitrary load profiles; a computable structure of the pump design cycle modes with determining the ratio of energy-efficient and energy-consuming operation modes, excess demand energy and taking into account the negative impact on the environment in the form of greenhouse gas emissions in CO2-equivalent. An approach to improving the incentive mechanism for pump operators for the implementation of energy service contracts to reduce the energy intensity of industrial and communal technological processes is considered.


2021 ◽  
Author(s):  
Oksana Ovdiienko

The article is devoted to main theoretical and practical questions concerning “green” investments in logistics infrastructure objects. This type of investments has certain peculiarities as it deals with the sphere which is related to any kind of business and human’s activity. Logistic infrastructure forms mobility. But no significant change in a separate facility will not give a significant result without a support to the relevant network and the highest intellectual level of its use. Planning of logistic infrastructure should be performed in such way that the positive effect on economic growth was maximal, and the negative impact on the environment is minimal. Thant’s why improving logistics infrastructure facilitates achieving sustainable goals as it works simultaneously for economic, environmental and social development. Thus it is extremely important to implement such tool from “green” economy concept as “green” investments towards logistics infrastructure objects. There were analyzed different theoretical approaches to the definition of “green” investments in the paper. The result of deep research of worlds’ best practical trends for “green” investing in logistics infrastructure objects is provided. There studied separately mentioned tendencies for all subtypes of hard logistics infrastructure: transport (electrification of vehicles, low-carbon transport systems, sustainable fuels), warehouse (automation, distribution centers decentralization, energy-efficient equipment and construction), packaging (suitable for processing packaging materials, moving from plastic to more environmental types of packaging), information infrastructure (energy-efficient servers, cloud computing, reducing the number of toxic materials and water required for the production of electronic devices), customs (The Green Customs Initiative), social (smart containers, automated food waste tracking systems and automated technologies of optical scanning). Also were studied main instruments to attract necessary finance support for “green” investments and analyzed ways how to implement them in Ukrainian market with its peculiarities.


Alloy Digest ◽  
1997 ◽  
Vol 46 (4) ◽  

Abstract Remanit 4306 is a low-carbon chromium nickel austenitic stainless steel that is superior in corrosion resistance to type 302 (see Alloy Digest SS-99, revised September 1998). Due to its low carbon content, Remanit 4306 is intergranular corrosion resistant under continuous operating conditions up to 350 C (652 F). This grade is particular suitable for high degrees of cold working and for sequential drawing. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, and joining. Filing Code: SS-679. Producer or source: Thyssen Stahl AG.


Author(s):  
Alexander D. Pisarev

This article studies the implementation of some well-known principles of information work of biological systems in the input unit of the neuroprocessor, including spike coding of information used in models of neural networks of the latest generation.<br> The development of modern neural network IT gives rise to a number of urgent tasks at the junction of several scientific disciplines. One of them is to create a hardware platform&nbsp;— a neuroprocessor for energy-efficient operation of neural networks. Recently, the development of nanotechnology of the main units of the neuroprocessor relies on combined memristor super-large logical and storage matrices. The matrix topology is built on the principle of maximum integration of programmable links between nodes. This article describes a method for implementing biomorphic neural functionality based on programmable links of a highly integrated 3D logic matrix.<br> This paper focuses on the problem of achieving energy efficiency of the hardware used to model neural networks. The main part analyzes the known facts of the principles of information transfer and processing in biological systems from the point of view of their implementation in the input unit of the neuroprocessor. The author deals with the scheme of an electronic neuron implemented based on elements of a 3D logical matrix. A pulsed method of encoding input information is presented, which most realistically reflects the principle of operation of a sensory biological neural system. The model of an electronic neuron for selecting ranges of technological parameters in a real 3D logic matrix scheme is analyzed. The implementation of disjunctively normal forms is shown, using the logic function in the input unit of a neuroprocessor as an example. The results of modeling fragments of electric circuits with memristors of a 3D logical matrix in programming mode are presented.<br> The author concludes that biomorphic pulse coding of standard digital signals allows achieving a high degree of energy efficiency of the logic elements of the neuroprocessor by reducing the number of valve operations. Energy efficiency makes it possible to overcome the thermal limitation of the scalable technology of three-dimensional layout of elements in memristor crossbars.


2019 ◽  
Vol 13 ◽  
Author(s):  
Haisheng Li ◽  
Wenping Wang ◽  
Yinghua Chen ◽  
Xinxi Zhang ◽  
Chaoyong Li

Background: The fly ash produced by coal-fired power plants is an industrial waste. The environmental pollution problems caused by fly ash have been widely of public environmental concern. As a waste of recoverable resources, it can be used in the field of building materials, agricultural fertilizers, environmental materials, new materials, etc. Unburned carbon content in fly ash has an influence on the performance of resource reuse products. Therefore, it is the key to remove unburned carbon from fly ash. As a physical method, triboelectrostatic separation technology has been widely used because of obvious advantages, such as high-efficiency, simple process, high reliability, without water resources consumption and secondary pollution. Objective: The related patents of fly ash triboelectrostatic separation had been reviewed. The structural characteristics and working principle of these patents are analyzed in detail. The results can provide some meaningful references for the improvement of separation efficiency and optimal design. Methods: Based on the comparative analysis for the latest patents related to fly ash triboelectrostatic separation, the future development is presented. Results: The patents focused on the charging efficiency and separation efficiency. Studies show that remarkable improvements have been achieved for the fly ash triboelectrostatic separation. Some patents have been used in industrial production. Conclusion: According to the current technology status, the researches related to process optimization and anti-interference ability will be beneficial to overcome the influence of operating conditions and complex environment, and meet system security requirements. The intelligent control can not only ensure the process continuity and stability, but also realize the efficient operation and management automatically. Meanwhile, the researchers should pay more attention to the resource utilization of fly ash processed by triboelectrostatic separation.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4136
Author(s):  
Clemens Gößnitzer ◽  
Shawn Givler

Cycle-to-cycle variations (CCV) in spark-ignited (SI) engines impose performance limitations and in the extreme limit can lead to very strong, potentially damaging cycles. Thus, CCV force sub-optimal engine operating conditions. A deeper understanding of CCV is key to enabling control strategies, improving engine design and reducing the negative impact of CCV on engine operation. This paper presents a new simulation strategy which allows investigation of the impact of individual physical quantities (e.g., flow field or turbulence quantities) on CCV separately. As a first step, multi-cycle unsteady Reynolds-averaged Navier–Stokes (uRANS) computational fluid dynamics (CFD) simulations of a spark-ignited natural gas engine are performed. For each cycle, simulation results just prior to each spark timing are taken. Next, simulation results from different cycles are combined: one quantity, e.g., the flow field, is extracted from a snapshot of one given cycle, and all other quantities are taken from a snapshot from a different cycle. Such a combination yields a new snapshot. With the combined snapshot, the simulation is continued until the end of combustion. The results obtained with combined snapshots show that the velocity field seems to have the highest impact on CCV. Turbulence intensity, quantified by the turbulent kinetic energy and turbulent kinetic energy dissipation rate, has a similar value for all snapshots. Thus, their impact on CCV is small compared to the flow field. This novel methodology is very flexible and allows investigation of the sources of CCV which have been difficult to investigate in the past.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4705
Author(s):  
Ewa Kochańska ◽  
Rafał M. Łukasik ◽  
Maciej Dzikuć

The COVID-19 pandemic has set new challenges for the HoReCa industry. Lockdowns have coincided with and strongly impacted the industrial transformation processes that have been taking place for a decade. Among the most important HoReCa transition processes are those related to the rapid growth of the delivery-food market and ordering meals via internet platforms. The new delivery-food market requires not only the development of specific distribution channels, but also the introduction of appropriate, very specific food packaging. Food packaging and its functionality are defined by the administrative requirements and standards applicable to materials that have contact with food and principally through the prism of the ecological disaster caused by enormous amounts of plastic waste, mainly attributed to the food packaging. To meet environmental and administrative requirements, new technologies to produce food packaging materials are emerging, ensuring product functionality, low environmental impact, biodegradability, and potential for composting of the final product. However, predominantly, the obtained product should keep the nutritional value of food and protect it against changes in color or shape. Current social transformation has a significant impact on the food packaging sector, on one hand creating a new lifestyle for society all over the world, and on the other, a growing awareness of the negative impact of humans on the environment and increasing responsibility for the planet. The COVID-19 pandemic has highlighted the need to develop a circular economy based on the paradigm of shortening distribution channels, using local raw materials, limiting the consumption of raw materials, energy, water, and above all, minimizing waste production throughout the life cycle of products, all of which are in line with the idea of low-carbon development.


2021 ◽  
Vol 40 (5) ◽  
pp. 8727-8740
Author(s):  
Rajvir Singh ◽  
C. Rama Krishna ◽  
Rajnish Sharma ◽  
Renu Vig

Dynamic and frequent re-clustering of nodes along with data aggregation is used to achieve energy-efficient operation in wireless sensor networks. But dynamic cluster formation supports data aggregation only when clusters can be formed using any set of nodes that lie in close proximity to each other. Frequent re-clustering makes network management difficult and adversely affects the use of energy efficient TDMA-based scheduling for data collection within the clusters. To circumvent these issues, a centralized Fixed-Cluster Architecture (FCA) has been proposed in this paper. The proposed scheme leads to a simplified network implementation for smart spaces where it makes more sense to aggregate data that belongs to a cluster of sensors located within the confines of a designated area. A comparative study is done with dynamic clusters formed with a distributive Low Energy Adaptive Clustering Hierarchy (LEACH) and a centralized Harmonic Search Algorithm (HSA). Using uniform cluster size for FCA, the results show that it utilizes the available energy efficiently by providing stability period values that are 56% and 41% more as compared to LEACH and HSA respectively.


Sign in / Sign up

Export Citation Format

Share Document