scholarly journals Numerical analysis of soil-steel bridge

2014 ◽  
Vol 13 (2) ◽  
pp. 153-161
Author(s):  
Damian Bęben ◽  
Michał Wrzeciono

The paper presents a numerical analysis of the soil-steel bridge in the scope of static loads. The Abaqus program based on the FEM was used to calculations. Maximum displacements were obtained in the shell crown, and the largest stresses in the haunches. Calculation results were compared with the experimental ones and previous calculations obtained from the Robot Millenium program. The shapes of calculated displacements and stresses are similar to those obtained with the experiment, but the absolute values were generally higher than measured ones. Using both calculation programs, the relative reductions of displacement were in the range of 15–39%, and 17–44% for stresses in favour of the Abaqus program. Developed calculation model of the soil-steel bridge in the Abaqus program allows to obtain reasonable values of internal forces in the shell structure.

2013 ◽  
Vol 756-759 ◽  
pp. 194-197
Author(s):  
Quan Zhou ◽  
Jian Guo Hou ◽  
Xiao Chun Zhang

Finite element model of a pre-stressed bridge is established using finite element software Abaqus according to the characteristics of the bridge. Three static loads are respectively applied to the model to investigate the stress distribution. Numerical calculation results of stress and displacement show that the design of the bridge meets the requirements of static loading.


2015 ◽  
Vol 22 (5) ◽  
pp. 585-596 ◽  
Author(s):  
Damian BEBEN ◽  
Adam STRYCZEK

The paper presents a numerical analysis of corrugated steel plate (CSP) bridge with reinforced concrete (RC) relieving slab under static loads. Calculations were made based on the finite element method using Abaqus software. Two computation models were used; in the first one, RC slab was used, and the other was without it. The effect of RC slab to deformations of CSP shell was determined. Comparing the computational results from two numerical models, it can be concluded that when the relieving slab is applied, substantial reductions in displacements, stresses, bending mo­ments and axial thrusts are achieved. Relative reductions of displacements were in the range of 53–66%, and stresses of 73–82%. Maximum displacements and bending moments were obtained at the shell crown, and maximum stresses and axial thrusts at the quarter points. The calculation results were also compared to the values from experimental tests. The course of computed displacements and stresses is similar to those obtained from experimental tests, although the absolute values were generally higher than the measured ones. Results of numerical analyses can be useful for bridge engineering, with particular regard to bridges and culverts made from corrugated steel plates for the range of necessity of using additional relieving elements.


2019 ◽  
Vol 41 (2) ◽  
pp. 67-73
Author(s):  
Czesław Machelski

AbstractA characteristic feature of soil-steel structures is that, unlike in typical bridges, the backfill and the carriageway pavement with its foundation play a major role in bearing loads. In the soil-steel structure model, one can distinguish two structural subsystems: the shell made of corrugated plates and the backfill with the pavement layers. The interactions between the subsystems are modelled as interfacial interactions, that is, forces normal and tangent to the surface of the shell. This is a static condition of the consistency of mutual interactions between the surrounding earth and the shell, considering that slip can arise at the interface between the subsystems. This paper presents an algorithm for determining the internal forces in the shell on the basis of the unit strains in the corrugated plates, and subsequently, the interfacial interactions. The effects of loads arising during the construction of a soil-steel bridge when, for example, construction machines drive over the structure, are taken into account in the analysis of the internal forces in the shell and in the surrounding earth. During construction, the forces in the shell are usually many times greater than the ones generated by service loads. Thus, the analytical results presented in this paper provide the basis for predicting the behaviour of the soil medium under operational loads.


2012 ◽  
Vol 550-553 ◽  
pp. 3160-3163
Author(s):  
Yong Guang Ma ◽  
Ning Ran ◽  
Bing Zheng

For the low pressure (LP) cylinder of a steam turbine, computation of the exhaust enthalpy is an important part in thermal power generating unit performance monitoring. A new online model for calculating the exhaust enthalpy was proposed aiming at the limitation of existing online calculation model for calculating the enthalpy of steam turbine LP cylinder exhaust steam. This model treats LP cylinder, condenser and corresponding heater as an open system, according to the energy balance equation of this open system, figuring out its exhaust enthalpy. Calculation results of typical steam turbine show that: in a large load change range, the results are close to thermal experimental value, the accuracy is similar to energy balance method.


2021 ◽  
Vol 14 (2) ◽  
pp. 54-66
Author(s):  
Svetlana Sazonova ◽  
Viktor Asminin ◽  
Alla Zvyaginceva

The sequence of application of the mixed method for calculating internal forces in statically indeterminate frames with elements of increased rigidity is given. The main system is chosen for the frame with one kinematic and one force unknown. The canonical equations of the mixed method are written, taking into account their meaning. Completed the construction of the final diagram of the bending moments and all the necessary calculations and checks. When calculating integrals, Vereshchagin's rule is applied. The solution of the problem is checked by performing the calculation using the computer program STAB12.EXE; the results of the calculations are numerically verified using the finite element method. An example of the formation of the initial data for the STAB12.EXE program and the subsequent processing of the calculation results, the rules for comparing the numerical results and the results obtained in the calculation of the frame by the mixed method are given.


2020 ◽  
Vol 110 (05) ◽  
pp. 322-327
Author(s):  
Christian Brecher ◽  
Thomas Frenken ◽  
Gabriel Axelrad ◽  
Stephan Neus

Planetenrollengewindetriebe finden aufgrund ihrer hohen Tragfähigkeit Anwendung in Bereichen, in denen Kugelgewindetriebe an ihre Lastgrenzen stoßen. Um ein Berechnungsmodell für Planentenrollengewindetriebe zu entwickeln, wurden Berechnungsmethoden zur Beschreibung der Lastverteilung innerhalb des Planetenrollengewindetriebs entwickelt. Mit diesen lassen sich die in den einzelnen Kontaktpunkten wirkenden Kräfte sowie die Verlagerungen des Gewindetriebs bestimmen. Die Berechnungsergebnisse werden unter anderem für die Berechnung der statischen axialen Steifigkeit und der Ermüdungslebensdauer benötigt.   Due to their high load capacity, planetary roller screws are used in areas where ball screws reach their load limits. To develop a calculation model for planetary roller screws, calculation methods to describe the load distribution within the planetary roller screw were developed in this step. With these methods, the forces acting in the individual contact points as well as the displacements of the screw drive can be determined. The calculation results are required, among other things, for the calculation of static axial stiffness and fatigue life.


2020 ◽  
Vol 22 (3) ◽  
pp. 132-139
Author(s):  
A. V. Denisov ◽  
M. D. Stepanov ◽  
N. A. Haraldin ◽  
A. V. Stepanov ◽  
A. I. Borovkov ◽  
...  

Abstract. In the work, a review of scientific articles on the behavior of tissues and organs of the human body under local mechanical effects on it, as well as a description of the physico-mechanical properties of biological materials. The selection of mechanical behavior for each biological material as part of a mathematical model of the human torso was carried out, its finite element model was created, validation experiments were modeled using data presented in the literature. An original calculation model of a human torso with a tuned interaction of organs with each other was developed. Contact interaction parameters are determined. The developed computational model of a human torso was verified based on data from open sources for an experiment with mechanical action by a cylindrical impactor. An algorithm for processing pressure and acceleration graphs has been implemented in order to obtain tolerance curves. A specialized modular program has been created for the automated processing of calculation results and the output of the main results. 42 numerical tests were carried out simulating the entry of a steel ball into each of 21 zones for power engineers of 40 and 80 J. According to the results of the tests for each organ, pressure and acceleration tolerance curves were obtained, animations of the behavior of organs under shock were created, visualization of the pressure field propagation in organs was obtained torso.


2017 ◽  
Vol 746 ◽  
pp. 48-55
Author(s):  
Vasiliy V. Yashin ◽  
Evgenii V. Aryshenskii ◽  
Erkin D. Beglov ◽  
Maksim S. Tepterev ◽  
Anna F. Grechnikova

Objective of the work: develop a model for calculation of plate exit thickness. This model is supposed to improve process reliability in obtaining specified thickness with +/- 0.5 mm tolerance. The work identifies major influences on obtaining specified thickness and relationship of their effects. Based on derived relationships, the work develops rolling force calculation model with the following inputs: alloy grade, feedstock temperature, feedstock entry and exit gage, feedstock width, rotational speed of the rolls. Mill stand characteristics, like mill stiffness, backlash, work roll behavior, were studied in relation to force and temperature. The resulting model allows to predict the value of work roll gap increase during rolling. The model was validated in production environment and demonstrated high confidence level of calculation results.


2015 ◽  
Vol 734 ◽  
pp. 887-892
Author(s):  
Xiao Bing Guo ◽  
Xiang Yu Tan ◽  
Yong Hong Wang ◽  
Yan Wang ◽  
Kun Ming Zhao ◽  
...  

Reactor individual branch loss mutation is one of the important reasons leading to local temperature too high. In order to explore process deviation for dry type hollow shunt reactor loss amplification effect, this paper is establish a loss calculation model of dry-type air-core reactor as the tool, Comparative analysis relationship between the four common types of process deviation and the local branch loss. Calculation results show that the number of turns deviation are the main factor influencing the reactor partial loss, So the reactor production winding process should strengthen the control of the number of turns deviation.


Sign in / Sign up

Export Citation Format

Share Document