scholarly journals TECHNOLOGY PECULIARITIES OF NEW BIOLOGICAL PREPARATION MICROHUMIN

2008 ◽  
Vol 7 ◽  
pp. 57-68
Author(s):  
V.V. Volkogon ◽  
O.M. Berdnikov ◽  
E.I. Volkogon ◽  
N.P. Shtan’ko

The paper covers research data on technology elaboration of new biological preparation Microhumin. It was shown that combination of biologically active biohumus extract with the suspension of active nitrogen fixing strain of azospirills in certain ratio results in creation of preparation performing additive stimulatory effect on growth and development of spring barley plants and activity of associative nitrogen fixation.

2008 ◽  
Vol 6 ◽  
pp. 29-38
Author(s):  
V.V. Volkogon ◽  
O.I. Bakun ◽  
E.I. Volkogon ◽  
N.P. Shtanko ◽  
P.G. Dulnev

The influence of plant growth regulator triman-1 on nitrogen fixing bacteria and nitrogen fixation process in barley root zone was studied in the laboratory and field conditions. It was shown that triman- 1 enhances associative nitrogen fixation activity when mineral nitrogen fertilizers (N30) was used. The use of triman-1 increases efficiency of associative symbiosis more effectively with the use of carboammonium salts rather than with ammonium nitrate.


2013 ◽  
Vol 17 ◽  
pp. 7-20
Author(s):  
O. V. Nadkernychna ◽  
E. P. Kopylov

The paper presents the study of active nitrogen fixation bacteria of genera Azotobacter, Azospirillum, Bacillus, Flavobacterium, Enterobacter and Pseudomonas isolated from root zone of spring wheat plants. The ability of selected diazotrophs to form associative systems with spring wheat was investigated. The most significant increase of molecular nitrogen fixation activity in root zone of plants was observed under the Azospirillum species background.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Keisuke Inomura ◽  
Takako Masuda ◽  
Julia M. Gauglitz

Abstract Unicellular nitrogen fixer Crocosphaera contributes substantially to nitrogen fixation in oligotrophic subtropical gyres. They fix nitrogen even when significant amounts of ammonium are available. This has been puzzling since fixing nitrogen is energetically inefficient compared with using available ammonium. Here we show that by fixing nitrogen, Crocosphaera can increase their population and expand their niche despite the presence of ammonium. We have developed a simple but mechanistic model of Crocosphaera based on their growth in steady state culture. The model shows that the growth of Crocosphaera can become nitrogen limited despite their capability to fix nitrogen. When they fix nitrogen, the population increases by up to 78% relative to the case without nitrogen fixation. When we simulate a simple ecological situation where Crocosphaera exists with non-nitrogen-fixing phytoplankton, the relative abundance of Crocosphaera increases with nitrogen fixation, while the population of non-nitrogen-fixing phytoplankton decreases since a larger fraction of fixed nitrogen is consumed by Crocosphaera. Our study quantitatively supports the benefit of nitrogen fixation despite the high electron/energy costs, even when an energetically efficient alternative is available. It demonstrates a competitive aspect of Crocosphaera, permitting them to be regionally significant nitrogen fixers.


Eukaryotic organisms do not fix nitrogen. Animals generally have no need to do so because of their complex food-acquisition and waste-disposal systems. Plants, by using carbon polymers for structural purposes, minimize their need for nitrogen. When very nitrogen-limited, to enter into symbiosis with nitrogen-fixing microorganisms may be the most controllable method for eukaryotes to obtain fixed nitrogen. Filamentous, heterocystous nitrogen-fixing cyanobacteria may be better adapted to a free-living than to a symbiotic existence, because of their complexity. In symbioses, their photosynthetic machinery becomes redundant and the need to differentiate heterocysts as well as derepress nif genes may be a disadvantage. This could in part account for the greater success of symbioses involving the structurally simpler genera Frankia , Rhizobium and Bradyrhizobium . Nitrogen fixation by legume nodules can be controlled by varying the oxygen supply. This control may be effected by a variable diffusion resistance, enabling oxygen required for ATP synthesis to be matched to available photosynthate. Such a resistance, which is probably located in the nodule cortex, may also be used to reduce nitrogen fixation in the presence of combined nitrogen and could also facilitate rapid responses to other forms of stress. Alternative resistances to gaseous diffusion may operate when water supplies are restricted. Rhizobium and Bradyrhizobium follow different patterns of differentiation into nitrogen-fixing bacteroids. These patterns are coupled with retention or loss of viability and with significant or no natural enrichment of the bacteroids with 15 N respectively. The basic patterns of each type are subject to host-modification. Recent studies on structures of primitive legume nodules show some parallels both with actinorhizas and with nodules on Parasponia induced by Bradyrhizobium . In particular, distribution of rhizobia in nodule tissues is intercellular and infection threads are formed only when bacteria ‘enter’ host cells; there is no intracellular ‘bacteroid’ stage. These threads are retained in the active nitrogen-fixing cells. Many legumes and some actinorhizas are not infected via root hairs. Therefore two of the stages often considered typical of the development of effective legume nodules, i.e. ‘release’ of bacteria into vesicles bounded by peribacteroid membrane and infection through root hairs, can be omitted; these omissions may be of use in attempts to transfer nodulating ability to new genera.


2020 ◽  
pp. 48-60
Author(s):  
Ihor Didur ◽  
Victoriia Shevchuk

Analysis of literary sources shows that legume-rhizobial systems annually fix nitrogen from the atmosphere in the amount of from 40 to 300 kg of per 1 ha of crop. Crops of legumes by Nitrogen fixation capabilities play an important role in saving and improvement of the natural soil fertility. It is known that in the process of the crop rotation with legumes the species composition of soil microorganisms is restored, as a result stable soil fertility rate is supported. Legumes plants are valuable siderata. Green legume fertilizer has a positive effect on increasing the productivity of plants, causes to the conservancy and increase of soil fertility. The plowing of the siderates leads to an increase in the humus content in the soil and the availability of phosphate treatment, a reduction in nitrogen gas losses from the soil. After decomposition and mineralization of leguminous siderata, the soil is replenished with nutritious macro- and microelements. Siderata is able to loosen heavy soils, improve their structure, and inhibit the growth of weeds that create water deficiency and reduce the content of minerals in the soil. Growing of peas leads to increased of the absorption efficiency of organic fertilizers by the following crops. The article approves the results of increasing the nitrogen-fixing ability of sowing pea with applying of the microbial preparation Bioinoculant and plant growth regulator Mars EL, and their role in increasing of biological nitrogen content for repair of soil fertility. It was established that the symbiotic activity of pea plants depends on the growth phase of the crop. The highest indexes of active nitrogen-fixing nodules on the roots of pea plants were found in the budding phase after pre-sowing seed complex treatment with Bioinoculant and growth regulator Mars EL. It was researched that he combined use of Bioinoculant and plant growth regulator Mars EL provided the increase of the mass of active nodules at the roots of the plant by 33% (phase of formation of 5-6 leaves), 38,8% (budding phase) and 22,8% (flowering phase) compared to the control. It was found that the use of inoculant and plant growth regulator with N30P30K30 fertilizer background leads to the greatest concentration of nodules on the main roots of the plants. The nodules had a pink color. In the technological process, the pre-sowing treatment of pea seeds with Bioinoculant and plant growth regulator Mars EL is an important perspective for improving the symbiotic activity of culture. This induces the reproduction of the soil's natural fertility. It is advisable to investigate the effect of inoculation and growth regulators with the different mechanism of action on the symbiotic activity of winter peas. Key words: soil fertility, legumes, siderata, symbiotic nitrogen fixation, inoculant, plant growth regulator


2008 ◽  
Vol 6 ◽  
pp. 7-17
Author(s):  
E.V. Nadkernychna

The associative nitrogen fixation of different winter rye sorts has been studied. It has been shown that such sorts as Charkovskoe 79, Struna, Novozibkovskoe 150, Borba, Verchniachskoe 32 have high N2- fixing potential. The mentioned sorts were noted by their high sensitivity to inoculation of nitrogen fixing bacteria from Azospirillum, Azotobacter, Bacillus, Pseudomonas genuses and ability to supply with effective functioning of N2-fixing bacteria – winter rye associative system.


Author(s):  
O. A. Artyukhova ◽  
O. V. Gladysheva ◽  
V. A. Svirina

The effect of applying various norms of mineral fertilizers on the biological indicators of crop plants during their growth and development in the Central non-black earth region in 2017-2019 was studied on the varieties of spring barley Vladimir, Reliable and Yaromir.such indicators as plant height, photosynthetic apparatus area, green mass growth, and elements of the yield structure were Studied. It was revealed that on average during the growing season, when the norms of mineral fertilizers were increased, the area of leaf plates increased and, as a result, the increase in green mass growth relative to the control variants increased by 56.3 % at (NРК)30, 82.3 % at (NРК)60, and 126.7 % at (NРК)90. The introduction of mineral fertilizers also influenced the formation of the crop structure. There was an increase in the tillering coefficient of varieties by 15.7%, 5.7 % and 21.3 % (Vladimir, Reliable and Yaromir, respectively) relative to the control, an increase in the number of grains in the ear from 15.1 to 22.4 PCs., the weight of 1000 grains from 48.0 to 55.7 g. and the weight of grain per ear from 0.7 to 1.2 g. There was a strong correlation between the doses of mineral fertilizers and the grain yield from + 0.80 to +1.0, and the variability was calculated.      


2020 ◽  
Vol 12 (11) ◽  
pp. 2002-2014
Author(s):  
Ling-Ling Yang ◽  
Zhao Jiang ◽  
Yan Li ◽  
En-Tao Wang ◽  
Xiao-Yang Zhi

Abstract Rhizobia are soil bacteria capable of forming symbiotic nitrogen-fixing nodules associated with leguminous plants. In fast-growing legume-nodulating rhizobia, such as the species in the family Rhizobiaceae, the symbiotic plasmid is the main genetic basis for nitrogen-fixing symbiosis, and is susceptible to horizontal gene transfer. To further understand the symbioses evolution in Rhizobiaceae, we analyzed the pan-genome of this family based on 92 genomes of type/reference strains and reconstructed its phylogeny using a phylogenomics approach. Intriguingly, although the genetic expansion that occurred in chromosomal regions was the main reason for the high proportion of low-frequency flexible gene families in the pan-genome, gene gain events associated with accessory plasmids introduced more genes into the genomes of nitrogen-fixing species. For symbiotic plasmids, although horizontal gene transfer frequently occurred, transfer may be impeded by, such as, the host’s physical isolation and soil conditions, even among phylogenetically close species. During coevolution with leguminous hosts, the plasmid system, including accessory and symbiotic plasmids, may have evolved over a time span, and provided rhizobial species with the ability to adapt to various environmental conditions and helped them achieve nitrogen fixation. These findings provide new insights into the phylogeny of Rhizobiaceae and advance our understanding of the evolution of symbiotic nitrogen fixation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Luz K. Medina-Cordoba ◽  
Aroon T. Chande ◽  
Lavanya Rishishwar ◽  
Leonard W. Mayer ◽  
Lina C. Valderrama-Aguirre ◽  
...  

AbstractPrevious studies have shown the sugarcane microbiome harbors diverse plant growth promoting microorganisms, including nitrogen-fixing bacteria (diazotrophs), which can serve as biofertilizers. The genomes of 22 diazotrophs from Colombian sugarcane fields were sequenced to investigate potential biofertilizers. A genome-enabled computational phenotyping approach was developed to prioritize sugarcane associated diazotrophs according to their potential as biofertilizers. This method selects isolates that have potential for nitrogen fixation and other plant growth promoting (PGP) phenotypes while showing low risk for virulence and antibiotic resistance. Intact nitrogenase (nif) genes and operons were found in 18 of the isolates. Isolates also encode phosphate solubilization and siderophore production operons, and other PGP genes. The majority of sugarcane isolates showed uniformly low predicted virulence and antibiotic resistance compared to clinical isolates. Six strains with the highest overall genotype scores were experimentally evaluated for nitrogen fixation, phosphate solubilization, and the production of siderophores, gibberellic acid, and indole acetic acid. Results from the biochemical assays were consistent and validated computational phenotype predictions. A genotypic and phenotypic threshold was observed that separated strains by their potential for PGP versus predicted pathogenicity. Our results indicate that computational phenotyping is a promising tool for the assessment of bacteria detected in agricultural ecosystems.


Sign in / Sign up

Export Citation Format

Share Document