scholarly journals Design of Two Channel Infusion Pump Analyzer Using Photo Diode Detector

Author(s):  
Syaifudin Syaifudin ◽  
Muhammad Ridha Mak’ruf ◽  
Sari Luthfiyah ◽  
Sumber Sumber

In the medical world, patient safety is a top priority. The large number of workloads and the frequency of using the devices in the long run will affect the accuracy and accuracy of the tool. If the flow rate and volume of the syringe pump or infusion pump given to the patient are not controlled (overdose or the fluid flow rate is too high) it can cause hypertension, heart failure or pulmonary edema. Therefore, it is necessary to have a calibration, which is an application activity to determine the correctness of the designation of the measuring instrument or measuring material. The purpose of this research is to make a two channel infusion device analyzer using a photodiode sensor. The contribution of this research is that the system can display three calibration results in one measurement at the same setting and can calibrate 2 tools simultaneously. The design of the module is in the form of an infrared photodiode sensor for reading the flowrate value. This study uses an infrared photodiode sensor for channels 1 and 2 installed in the chamber. This study uses a flow rate formula that is applied to the water level system to obtain 3 calibration results. Infrared photodiode sensor will detect the presence of water flowing in the chamber from an infusion or syringe pump. Then the sensor output will be processed by STM32 and 3 calibration results will be displayed on the 20x4 LCD. This tool has an average error value on channel 1 of 3.50% and on channel 2 of 3.39%. It can be concluded that the whole system can work well, the placement and distance between the infrared photodiodes also affects the sensor readings

Author(s):  
Nikmatul Jannah ◽  
Syaifudin Syaifudin ◽  
Liliek Soetjiatie ◽  
Muhammad Irfan Ali

In the medical world, patient safety is a top priority. The number of workloads and frequency of use in the long term will affect the accuracy and precision of the equipment, therefore calibration is needed, namely the measurement activities to determine the truth of the appointment value of measuring instruments and/or measuring materials based on the standards of the Minister of Health Regulation No. 54/2015. The purpose of this study is to make the design of the Infusion Device Analyzer on flow rate parameters. The main advantage of this study is that the system can display three calibration results in one measurement at the same setting. The results of the calibration will determine the feasibility of an infusion pump or a syringe pump. This study uses the flow rate formula which is applied to the water level system to obtain the calibration results. The infrared photodiode sensor will detect the flow of water in the chamber that comes from the infusion or syringe pump. Furthermore, the sensor output will be processed by the microcontroller and the reading results are displayed on the liquid crystal display. The average measurement at a setting of 10 ml/hour is 9.36 ml/hour, at a setting of 50 ml/hour is 46.64 ml/hour and at a setting of 100 ml/hour is 96.04 ml/hour. Based on available data, this tool has an average error value of 5.69%, where the value exceeds the tolerance limit allowed by ECRI, which is ± 5%.


Author(s):  
Andjar Pudji Pudji ◽  
Anita Miftahul Maghfiroh ◽  
Nuntachai Thongpance

Infusion devices are the basis for primary health care, that is to provide medicine, nutrition, and hydration to patients. One of the infusion devices is a syringe pump and an infusion pump. This device is very important to assist the volume and flow that enters the patient's body, especially in situations related to neonatology or cancer treatment. Therefore, a comparison tool is needed to see whether the equipment is used or not. The purpose of this research is to make an infusion device analyzer (IDA) design with a flow rate parameter. The contribution of this research is that the tool can calculate the correct value of the flow rate that comes out of the infusion pump and syringe pump. The water released by the infusion pump or syringe pump will be converted into droplets which are then detected by the sensor. This tool uses an infrared sensor and a photodiode. The results obtained by the sensor will come by Arduino nano and code it to the 16x2 Character Liquid Crystal Display (LCD) and can be stored on an SD Card so that it can be analyzed further. In setting the flow rate for the syringe pump of 100 mL / hour, the error value is 3.9, 50 ml / hour 0.02, 20 mL / hour 0.378, 10 mL / hour 0.048, and 5 mL / hour 0.01. The results show that the average error of the syringe pump performance read by the module is 0.87. The results obtained from this study can be implemented for the calibration of the infusion pump and the syringe pump so that it can be determined whether the device is suitable or not


2019 ◽  
Vol 19 (2) ◽  
pp. 75
Author(s):  
Erry Dwi Kurniawan ◽  
Alwin Adam ◽  
Muhammad Ichlasul Salik ◽  
Paulus Lobo Gareso

Micro/nanopatterns with micro deposition techniques have been used in various applications such as flexible electronic devices, biosensing, and biological tissue engineering. For depositing a small size of droplets that can be controlled, structured and patterned precisely is a very important process for microfabrication. In this study, we developed a low cost and simple system for fabricating micro/nanostructure by a selective micro deposition process using a syringe pump. This method is an additive fabrication method where selective droplet materials are released through a needle of the syringe pump. By translating the rotating stepper motor into a linear movement of the lead screw, it will press the plunger of the syringe and give a force to the fluid inside the syringe, hence a droplet can be injected out. The syringe pump system consists of a syringe, the mechanical unit, and the controller unit. A stepper motor, the lead screw, and the mechanical components are used for the mechanical unit. Arduino Uno microcontroller is used as the controller unit and can be programmed by the computer through GUI (Graphical User Interface). The input parameters, such as the push or pull of flow direction, flow rate, the droplet volume, and syringe size dimension can be inputted by the user as their desired value via keypad or the computer. The measurement results show that the syringe pump has characteristics: the maximum average error value of the measured volume is 2.5% and the maximum average error value of the measured flow rate is 14%. The benefits of a syringe pump for micro deposition can overcome photolithography weaknesses, which require an etching and stencil process in the manufacture of semiconductors. Combining two or more syringes into one system with different droplet materials can be used as a promising method for 3D microfabrication in the future.


2017 ◽  
Vol 866 ◽  
pp. 244-247
Author(s):  
Pattarinee Klumdoung ◽  
Piyapong Pankaew

This research examines the development of a low cost mobile electrospinning system for fabricating nanofiber. The electrospinning system developed in this study consists of a horizontal needle arrangement and a motor which supports the working system that controls the solution flow rate without an external syringe pump. In order to discover the equipment operating conditions for nanofiber fabrication, the distance from the needle to the target was studied. A PVA solution of 8wt% was used and voltage was applied at 13 kV. The needle to target distances were varied from 8-18 cm. At a distance of 10 cm, the SEM images showed that the smallest diameter of the fiber was 119 nm. The average diameter was in the range of 119-240 nm. Concentrations of the 3 different solutions of PVA, PEO and PCL with the variation of voltage at each concentration were studied. The results show the diameter of PVA at 8 wt% and 12%wt are in the range of 127-197 nm and 222-402 nm, respectively. The diameter of PCL solution at a 20 wt% concentration is in the range of 32-60 nm. PEO at 2 wt% and 4wt% was not able to form as a fiber.


2013 ◽  
Vol 20 (2) ◽  
pp. 299-306 ◽  
Author(s):  
Karolina Blaszczyk ◽  
Michal Chudy ◽  
Zbigniew Brzozka ◽  
Artur Dybko

Abstract This paper describes a new contactless conductivity detector, whose electrodes are constructed of microchannels filled with solution of KCl - called pseudoelectrodes. The lab-on-a-chip microdevice was fabricated in poly(dimethylsiloxane) PDMS, using a moulding technique. The mould was made from a dry negative photoresist with a thickness of 50 μm. During the tests, the dimension! and arrangement of pseudoelectrodes` microchannels were evaluated. The analyte was pumped into the microchannel using a syringe pump with a flow rate of 50 μL/min. Reproducible!changes of the signal were obtained.


Author(s):  
Nisa'ul Sholihah ◽  
Abd Kholiq ◽  
Sumber Sumber

Infuse pump is a medical equipment which is design to control and regulate the administration of intravenous fluids in the treatment.. This module uses the L298N motor driver as a stepper motor controller. The choice of the infuse pump setting is the volume setting from 100 ml to 500 ml and the speed setting of 30 ml / hour, 60 ml / hour, and 90 ml / hour. The author uses the Atmega 328 microcontroller as a droplet controller per minute, volume and speed. Occlusion in this device is in the detector of the droplets that are alerted in the presence of a sound buzzer. This tool is also equipped with monitoring volume, tpm and speed on a wireless-based PC using HC-11 as a transmission from module to PC. This tool is equipped with oclusion. The flow rate data processing in IDA from infusion got the highest error result at the setting of 30 ml / hour which was equal to 5.97%. the highest error for the calculation of droplets in the module is the setting of 30 ml / hour which is equal to 32% and manually at setting 60 which is 23%.


Author(s):  
Rizki Auliya ◽  
Syaifudin Syaifudin ◽  
Liliek Soetjiatie

A foreign fluid that enters the patient can cause some bodily reactions including infection, air embolism and blood clot. Side effects given will be fatal to the body, one of which occurs the blockage of the capillary vessels in the heart that can cause heart attack to stroke. The purpose of this research is to design a tool that can be used to measure maximum pressure as a form of the calibration of the syringe pump and infusion pump. The contribution of this research is that the system can simulate the presence of blockages in fluid flow and detect large pressure values detected by the Under Test Unit (UUT) with a motor peerround system that opens/closes fluid flow. Servo Motor MG966R simulate the presence of blockage with constant motor degree until the alarm UUT reads, then Sensor XGZP6887 detects the pressure generated by the blockage and processed by the microcontroller and displayed on the LCD display of the character. This study resulted in a maximum pressure average value of 7.12 Psi. The results showed that data retrieval had an error value of -0.12. This research can be implemented to perform pressure measurements on the syringe pump or infusion pump.


Author(s):  
Nur Hasanah Ahniar ◽  
Hendra Marwazi ◽  
Rismarini Yufita

Infusion pump is a device used to enter fluid into the patient's body through a continuous. At present there are two types of infusion pumps namely vertical infusion pumps and horizontal infusion pumps. Both infusion pumps have different technologies. The aim of this study is to compare the performance results of the two infusion pumps. Infusion Pump is given 3 different liquid infusions, use 3 parameters flowrate setting (50 ml / h; 100 ml / h; 200 ml / h) and the data collection repeated for 5 times, with 3 minutes time for each parameter. The results of data collection will be tested using the normality test and difference test. Infusion Pump was calibrated first by using the Infusion Device Analyzer to check the condition of the tool. Based on the results of the T-test where the significant value is greater than 0.05, which means that the null hypothesis is accepted while the alternative hypothesis is rejected


2018 ◽  
Vol 2018 ◽  
pp. 1-4
Author(s):  
Vorasruang Thongsukh ◽  
Chanida Kositratana ◽  
Aree Jandonpai

Introduction. In patients who require a massive intraoperative transfusion, cold fluid or blood transfusion can cause hypothermia and potential adverse effects. One method by which to prevent hypothermia in these patients is to warm the intravenous fluid before infusion. The aim of this study was to determine the effect of the fluid flow rate on the efficacy of a fluid warmer. Methods. The room air temperature was controlled at 24°C. Normal saline at room temperature was used for the experiment. The fluid was connected to an infusion pump and covered with a heater line, which constantly maintained the temperature at 42°C. The fluid temperature after warming was measured by an insulated thermistor at different fluid flow rates (100, 300, 600, 900, and 1200 mL/h) and compared with the fluid temperature before warming. Effective warming was defined as an outlet fluid temperature of >32°C. Results. The room temperature was 23.6°C ± 0.9°C. The fluid temperature before warming was 24.95°C ± 0.5°C. The outlet temperature was significantly higher after warming at all flow rates (p<0.001). The increases in temperature were 10.9°C ± 0.1°C, 11.5°C ± 0.1°C, 10.2°C ± 0.1°C, 10.1°C ± 0.7°C, and 8.4°C ± 0.2°C at flow rates of 100, 300, 600, 900, and 1200 mL/h, respectively. The changes in temperature among all different flow rates were statistically significant (p<0.001). The outlet temperature was >32°C at all flow rates. Conclusions. The efficacy of fluid warming was inversely associated with the increase in flow rate. The outlet temperature was <42°C at fluid flow rates of 100 to 1200 mL/h. However, all outlet temperatures reached >32°C, indicating effective maintenance of the core body temperature by infusion of warm fluid.


Sign in / Sign up

Export Citation Format

Share Document