Lab-on-a-Chip Microdevice with Contactless Conductivity Detector

2013 ◽  
Vol 20 (2) ◽  
pp. 299-306 ◽  
Author(s):  
Karolina Blaszczyk ◽  
Michal Chudy ◽  
Zbigniew Brzozka ◽  
Artur Dybko

Abstract This paper describes a new contactless conductivity detector, whose electrodes are constructed of microchannels filled with solution of KCl - called pseudoelectrodes. The lab-on-a-chip microdevice was fabricated in poly(dimethylsiloxane) PDMS, using a moulding technique. The mould was made from a dry negative photoresist with a thickness of 50 μm. During the tests, the dimension! and arrangement of pseudoelectrodes` microchannels were evaluated. The analyte was pumped into the microchannel using a syringe pump with a flow rate of 50 μL/min. Reproducible!changes of the signal were obtained.

2017 ◽  
Vol 866 ◽  
pp. 244-247
Author(s):  
Pattarinee Klumdoung ◽  
Piyapong Pankaew

This research examines the development of a low cost mobile electrospinning system for fabricating nanofiber. The electrospinning system developed in this study consists of a horizontal needle arrangement and a motor which supports the working system that controls the solution flow rate without an external syringe pump. In order to discover the equipment operating conditions for nanofiber fabrication, the distance from the needle to the target was studied. A PVA solution of 8wt% was used and voltage was applied at 13 kV. The needle to target distances were varied from 8-18 cm. At a distance of 10 cm, the SEM images showed that the smallest diameter of the fiber was 119 nm. The average diameter was in the range of 119-240 nm. Concentrations of the 3 different solutions of PVA, PEO and PCL with the variation of voltage at each concentration were studied. The results show the diameter of PVA at 8 wt% and 12%wt are in the range of 127-197 nm and 222-402 nm, respectively. The diameter of PCL solution at a 20 wt% concentration is in the range of 32-60 nm. PEO at 2 wt% and 4wt% was not able to form as a fiber.


Author(s):  
Andjar Pudji Pudji ◽  
Anita Miftahul Maghfiroh ◽  
Nuntachai Thongpance

Infusion devices are the basis for primary health care, that is to provide medicine, nutrition, and hydration to patients. One of the infusion devices is a syringe pump and an infusion pump. This device is very important to assist the volume and flow that enters the patient's body, especially in situations related to neonatology or cancer treatment. Therefore, a comparison tool is needed to see whether the equipment is used or not. The purpose of this research is to make an infusion device analyzer (IDA) design with a flow rate parameter. The contribution of this research is that the tool can calculate the correct value of the flow rate that comes out of the infusion pump and syringe pump. The water released by the infusion pump or syringe pump will be converted into droplets which are then detected by the sensor. This tool uses an infrared sensor and a photodiode. The results obtained by the sensor will come by Arduino nano and code it to the 16x2 Character Liquid Crystal Display (LCD) and can be stored on an SD Card so that it can be analyzed further. In setting the flow rate for the syringe pump of 100 mL / hour, the error value is 3.9, 50 ml / hour 0.02, 20 mL / hour 0.378, 10 mL / hour 0.048, and 5 mL / hour 0.01. The results show that the average error of the syringe pump performance read by the module is 0.87. The results obtained from this study can be implemented for the calibration of the infusion pump and the syringe pump so that it can be determined whether the device is suitable or not


Author(s):  
Syaifudin Syaifudin ◽  
Muhammad Ridha Mak’ruf ◽  
Sari Luthfiyah ◽  
Sumber Sumber

In the medical world, patient safety is a top priority. The large number of workloads and the frequency of using the devices in the long run will affect the accuracy and accuracy of the tool. If the flow rate and volume of the syringe pump or infusion pump given to the patient are not controlled (overdose or the fluid flow rate is too high) it can cause hypertension, heart failure or pulmonary edema. Therefore, it is necessary to have a calibration, which is an application activity to determine the correctness of the designation of the measuring instrument or measuring material. The purpose of this research is to make a two channel infusion device analyzer using a photodiode sensor. The contribution of this research is that the system can display three calibration results in one measurement at the same setting and can calibrate 2 tools simultaneously. The design of the module is in the form of an infrared photodiode sensor for reading the flowrate value. This study uses an infrared photodiode sensor for channels 1 and 2 installed in the chamber. This study uses a flow rate formula that is applied to the water level system to obtain 3 calibration results. Infrared photodiode sensor will detect the presence of water flowing in the chamber from an infusion or syringe pump. Then the sensor output will be processed by STM32 and 3 calibration results will be displayed on the 20x4 LCD. This tool has an average error value on channel 1 of 3.50% and on channel 2 of 3.39%. It can be concluded that the whole system can work well, the placement and distance between the infrared photodiodes also affects the sensor readings


2018 ◽  
Vol 33 (5) ◽  
pp. 619-629 ◽  
Author(s):  
Maryam Soleimani ◽  
Shohreh Mashayekhan ◽  
Hossein Baniasadi ◽  
Ahmad Ramazani ◽  
Mohamadhasan Ansarizadeh

Peripheral nervous system in contrary to central one has the potential for regeneration, but its regrowth requires proper environmental conditions and supporting growth factors. The aim of this study is to design and fabricate a conductive polyaniline/graphene nanoparticles incorporated gelatin nanofibrous scaffolds suitable for peripheral nervous system regeneration. The scaffolds were fabricated with electrospinning and the fabrication process was designed with Design-Expert software via response surface methodology. The effect of process parameters including applied voltage (kV), syringe pump flow rate (cm3/h), and PAG concentration (wt%), on the scaffold conductivity, nanofibers diameter, and cell viability were investigated. The obtained results showed that the scaffold conductivity and cell viability are affected by polyaniline/graphene concentration while nanofiber diameter is more affected by the applied voltage and syringe pump flow rate. Optimum scaffold with maximum conductivity (0.031 ± 0.0013 S/cm) and cell compatibility and suitable diameter were electrospun according to the software introduced values for the process parameters (voltage of 13 kV, flow rate of 0.1 cm3/h, and PAG wt.% of 1.3) and its morphology, cell compatibility, and biodegradability were further investigated, which showed its potential for applying in peripheral nervous system injury regeneration.


2016 ◽  
Vol 123 (3) ◽  
pp. 705-714 ◽  
Author(s):  
Destiny F. Chau ◽  
Terrie Vasilopoulos ◽  
Miriam Schoepf ◽  
Christina Zhang ◽  
Brenda G. Fahy

Author(s):  
Tatjana Dankovic ◽  
Alan Feinerman

We have developed a novel fabrication technique for a passive, continuous flow micromixer with laminar flow. The device is made by welding thin thermoplastic sheets using a simple manufacturing procedure which reduces the total cost of the device, and enables frequent changes to the design as necessary. Two types of mixers were made, one with obstacles in the mixing channel to induce the forming of vortices, and the other having serpentine design. For both mixer designs we made a range of mixing chamber sizes to examine the efficiency of the mixing process in respect to available mixing length. In experiments we used two different colored water solutions to inject at the device inlets. The flow rate of the fluids was controlled by Cole Parmer Instruments syringe pump and the observed colored patterns are recorded using Digital Blue™ QX5 microscope. As the flow rate was changed in experiments from 0.01 to 100 microliter/min, the mixing was accomplished further down the channel and in some cases was not completed within the mixing chamber. However the relation between mixing length and flow rate (Reynolds number) is not linear and after certain value of Reynolds number the mixing is completed at a shorter distance from the inlets then expected. Our experimental results with larger devices show this non-linearity, while for the devices of smaller size that was not observed.


Author(s):  
Arvind Chandrasekaran ◽  
Muthukumaran Packirisamy

In this work, a Piezo actuated Valveless micropump is proposed for applications in Micro-Total Analysis Systems (μTAS) and Lab-on-a-Chip. Flow rectification in the micropump has been brought about with the use of a diffuser element. The device is fabricated on PDMS-Glass substrate with the glass acting as the diaphragm. A PZT disc is integrated with the setup for actuation. The micropump has been characterized for its dynamic behavior, flow characteristics, and pressure. It was found that the maximum flow rate for the micropump was obtained at low frequency which makes it usable for practical μTAS applications.


Lab on a Chip ◽  
2015 ◽  
Vol 15 (4) ◽  
pp. 1110-1115 ◽  
Author(s):  
Wen Zeng ◽  
Ian Jacobi ◽  
David J. Beck ◽  
Songjing Li ◽  
Howard A. Stone

We study pressure and flow-rate fluctuations in microchannels, where the flow rate is supplied by a syringe pump.


2019 ◽  
Vol 19 (2) ◽  
pp. 75
Author(s):  
Erry Dwi Kurniawan ◽  
Alwin Adam ◽  
Muhammad Ichlasul Salik ◽  
Paulus Lobo Gareso

Micro/nanopatterns with micro deposition techniques have been used in various applications such as flexible electronic devices, biosensing, and biological tissue engineering. For depositing a small size of droplets that can be controlled, structured and patterned precisely is a very important process for microfabrication. In this study, we developed a low cost and simple system for fabricating micro/nanostructure by a selective micro deposition process using a syringe pump. This method is an additive fabrication method where selective droplet materials are released through a needle of the syringe pump. By translating the rotating stepper motor into a linear movement of the lead screw, it will press the plunger of the syringe and give a force to the fluid inside the syringe, hence a droplet can be injected out. The syringe pump system consists of a syringe, the mechanical unit, and the controller unit. A stepper motor, the lead screw, and the mechanical components are used for the mechanical unit. Arduino Uno microcontroller is used as the controller unit and can be programmed by the computer through GUI (Graphical User Interface). The input parameters, such as the push or pull of flow direction, flow rate, the droplet volume, and syringe size dimension can be inputted by the user as their desired value via keypad or the computer. The measurement results show that the syringe pump has characteristics: the maximum average error value of the measured volume is 2.5% and the maximum average error value of the measured flow rate is 14%. The benefits of a syringe pump for micro deposition can overcome photolithography weaknesses, which require an etching and stencil process in the manufacture of semiconductors. Combining two or more syringes into one system with different droplet materials can be used as a promising method for 3D microfabrication in the future.


2013 ◽  
Vol 647 ◽  
pp. 929-934 ◽  
Author(s):  
Yaw Jen Chang ◽  
Yun Wei Chung ◽  
Ting An Chou ◽  
Min Fen Huang

In this paper, a micropump with electromagnetic actuation is presented. The micropump mainly consists of coil actuators and a PDMS micropump layer. The microcoil was fabricated using the printed circuit board (PCB) with the conventional PCB treatment and the PDMS layer was formed by casting technique. A control circuit was designed using microcontroller to produce square waves to control coil actuator. Due to the simple fabrication process, the micropump can be incorporated in a disposable PDMS lab-on-a-chip device as a fluid actuation component. However, the coil actuator is reusable. In addition, the control circuit makes the micropump portable. The experiment results show that this proposed micropump is capable of delivering a flow rate of 470 μL/min using one coil actuator.


Sign in / Sign up

Export Citation Format

Share Document