scholarly journals Water Absorption Behavior on Natural/ Synthetic Fibre Reinforced Polymer Composites

This paper deals with the effect of moisture absorption on single coconut sheath fiber and single glass fibre. Additionally, the moisture effect in fibre reinforced unsaturated polyester composites like coconut sheath (CS) and Glass mat (GM) composite. Initially, CS and GM fibre reinforced polyester composite were produced through hand layup followed by compression moulding method. CS/UPR and GM/UPR composites were made through water treatment by dipping those composites in ordinary water for various time intervals at room temperature to study the water absorption effect. At different time periods, the absorption of water showed gradual increment. The effect of water gain in percentage for CS and GM was observed. From this experiment, it is concluded that the effect of water gain in CS/UPR composite is higher than GM/UPR composite.

2021 ◽  
pp. 152808372110575
Author(s):  
Adnan Amjad ◽  
Aslina Anjang Ab Rahman ◽  
Habib Awais ◽  
Mohd Shukur Zainol Abidin ◽  
Junaid Khan

Composite holds great promise for future materials considering its advantages such as excellent strength, stiffness, lightweight, and cost-effectiveness. Due to rising environmental concerns, the research speed gradually changes from synthetic polymer composites to natural fibre reinforced polymer composites (NFRPCs). Natural fibres are believed a valuable and robust replacement to synthetic silicates and carbon-based fibres, along with biodegradability, recyclability, low cost, and eco-friendliness. But the incompatibility between natural fibre and polymer matrices and higher moisture absorption percentage of natural fibre limitise their applications. To overcome these flaws, surface treatment of natural fibre and nanofiller addition have become some of the most important aspects to improve the performance of NFRPCs. This review article provides the most recent development on the effect of different nanofiller addition and surface treatment on the mechanical, thermal, and wetting behaviour of NFRPCs. It concludes that the fibre surface treatment and nanofillers in natural fibre polymer composites positively affect mechanical, thermal and water absorption properties. A systematic understanding in this field covers advanced research basics to stimulate investigation for fabricating NFRPCs with excellent performance.


Author(s):  
Agung Efriyo Hadi ◽  
Tezara Cionita ◽  
Deni Fajar Fitriyana ◽  
Januar Parlaungan Siregar ◽  
Ahmed Nurye Oumer ◽  
...  

Incorporating natural fibre as reinforcement in the polymer matrix has shown a negative effect since the natural fibre is hydrophilic. The natural fibre easily absorbs water which causes an effect on the mechanical properties of the composites. The objective of this paper is to investigate the water absorption behaviour of hybrid jute-roselle woven fibre reinforced unsaturated polyester composite and the effect of water absorption in terms of tensile strength and tensile modulus. The effect of hybrid composite on the thickness swelling will be tested. The fabrication method used in this study is the hand lay-up technique to fabricate 2-layer and 3-layer composites with layering sequences of woven jute (J)/roselle (Ro) fibre. The results of the study showed that pure roselle fibres for 2 and 3-layer composites have the highest water absorption behaviour 3.86% and 5.51%, respectively, in 28 days) as well as thickness swelling effect, whereas hybrid J-Ro and J-J-Ro composites showed the least water absorption (2.65% and 3.76%, respectively) in 28 days) in both the tests. The hybridisation between jute and roselle fibres reduced water absorption behaviour and improved the fibres dimensional stability. The entire composites showed a decreasing trend for both tensile strength and tensile modulus strength after five weeks of water immersion. Jute fibre composite hybridised with roselle fibre can be used to reduce the total reduction of both tensile strength and tensile modulus throughout the whole immersion period. Moreover, the tensile testing showed that jute fibre composite hybridised with roselle fibre have produced the strongest composite with the highest tensile and modulus strength compared to other types of composites. The hybridisation of diverse fibre reinforcements aids in minimising the composite water absorption and thickness swelling, hence reducing the effect of tensile characteristics.


The natural fibers have been received much more attention in research due the better compatibility, high strength, easy availability etc. The work addresses the moisture absorption on surface treated luffa fiber reinforced polyester composite. The fibers are treated with NAOH solution. The luffa fiber reinforced polyester composite were prepared by the compression moulding technique with optimum pressure of 17MPa. The composites were prepared for 50% fiber loading condition. The prepared composites are subjected to moisture absorption test for 1hr,5 hr and 10hrs. The result shows that the treated composite possesses the high hardness than the untreated composites.


2022 ◽  
Vol 30 (1) ◽  
pp. 397-412
Author(s):  
Bassam Hamid Alaseel ◽  
Mohamed Ansari Mohamed Nainar ◽  
Noor Afeefah Nordin ◽  
Zainudin Yahya ◽  
Mohd Nazim Abdul Rahim

This study investigates the effect of water absorption on the flexural strength of kenaf/ glass/unsaturated polyester (UPE) hybrid composite solid round rods used for insulating material applications. Three volume fractions of kenaf/glass fibre 20:80 (KGPE20), 30:70 (KGPE30), and 40:60 (KGPE40) with three different fibre arrangement profiles of kenaf fibres were fabricated by using the pultrusion technique and were aimed at studying the effect of kenaf fibres arrangement profile and its content in hybrid composites. The fibre/ resin volume fraction was maintained constant at 60:40. The dispersion morphologies of tested specimens were observed using the scanning electron microscope (SEM). The findings were compared with pure glass fibre-reinforced UPE (control) composite. The water absorption results showed a clear indication of how it influenced the flexural strength of the hybrid and non-hybrid composites. The least affected sample was observed in the 30KGPE composite type, wherein the kenaf fibre was concentrated at the centre of a cross-section of the composite rod. The water absorption reduced the flexural strength by 7%, 40%, 24%, and 38% of glass/UPE (control), 20KGPE, 30KGPE, and 40KGPE composites, respectively. In randomly distributed composite types, the water absorption is directly proportional to the volume fraction of kenaf fibre. At the same time, flexural properties were inversely proportional to the volume fraction of kenaf fibres. Although the influence of water absorption on flexural strength is low, the flexural strength of pultruded hybrid composites was more influenced by the arrangement of kenaf fibre in each composite type than its fibre loading.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Amuthakkannan Pandian ◽  
Manikandan Vairavan ◽  
Winowlin Jappes Jebbas Thangaiah ◽  
Marimuthu Uthayakumar

The study of mechanical properties of fibre reinforced polymeric materials under different environmental conditions is much important. This is because materials with superior ageing resistance can be satisfactorily durable. Moisture effects in fibre reinforced plastic composites have been widely studied. Basalt fibre reinforced unsaturated polyester resin composites were subjected to water immersion tests using both sea and normal water in order to study the effects of water absorption behavior on mechanical properties. Composites specimens containing woven basalt, short basalt, and alkaline and acid treated basalt fibres were prepared. Water absorption tests were conducted by immersing specimens in water at room temperature for different time periods till they reached their saturation state. The tensile, flexural, and impact properties of water immersed specimens were conducted and compared with dry specimens as per the ASTM standard. It is concluded that the water uptake of basalt fibre is considerable loss in the mechanical properties of the composites.


2017 ◽  
Vol 882 ◽  
pp. 89-100 ◽  
Author(s):  
Omid Nabinejad ◽  
Sujan Debnath ◽  
Teh J. Ying ◽  
Willey Y.H. Liew ◽  
Ian J. Davies

The effect of alkali treatment and nanoclay addition on the mechanical properties and water absorption behavior of rice husk particle (RHP) reinforced unsaturated polyester (UP) composites was investigated. Thermogravimetric analysis (TGA) indicated that the alkali treatment removed most of the hemicellulose and impurities from the RHP with the tensile strength, tensile modulus, flexural strength and flexural modulus of the resulting composites being improved by alkali treatment. The results indicated that the 5% sodium hydroxide concentration had the optimum performance on mechanical strength and water absorption resistance. Furthermore, the influence of nanoclay addition (1, 3 and 5 wt%) on the properties of optimum alkali treated RHP-UP composites was investigated with the lowest content (1 wt%) of nanoclay showing the highest mechanical performance. However, further addition of nanoclay improved the moisture absorption resistance of the composites. Good interface bonding between the filler and matrix was observed from scanning electron micrographs for the optimum RHP alkali treated and nanoclay dispersed RHP-UP composites.


Sign in / Sign up

Export Citation Format

Share Document