scholarly journals Proximate and Ultimate Charaterization of Coal Samples from Southwestern Part of Ethiopia.

This study aimed to characterize the coal in terms of proximate and ultimate analyses. The analytical assessment of properties such as volatile matter, moisture, fixed carbon, and ash content are very important to know the quality of the coal. The proximate analysis results shows that the moisture content varies from 13.4 to 22.6 wt%, the fixed carbon varies from 26.7 and 38 wt%, the ash content varies from 11.9 to 25.7 wt%, the volatile matter varies from 23.8 to 36.5iwt%. The analytical results show that the Carbon content varies from 48.60 to 70.68 wt%, Oxygen content varies from 42.29 to 57.38 wt%, the hydrogen content ranges from 4.43 to 5.28 wt%, the sulphur varies from 1.35 toi3.04 wt%, the Nitrogen content varies from 1.86 to 2.34 wt%. Proximate analysis and calorific data show that Ethiopian coal is in the soft coal series (lignite to bituminous coal) and is genetically classified as humic, sapropelic and mixed coal. The present study helps to characterize the coal type and also highlights the importance of chemical parameters in characterizing the coal besides, tracing the depositional environment and also helps to the economical evolutions of the deposit

2020 ◽  
Vol 15 (1) ◽  
pp. 38-44
Author(s):  
Ana Dewita ◽  
M. Faisal ◽  
Asri Gani

The charcoal produced from oil palm empty fruit bunches pyrolysis can be utilized as environmentally friendly alternative fuel briquettes. This research aimed at improving the quality of these EFB briquettes using brown algae adhesive (alginate). The adhesive was added at 2.5%, 5%, 7.5%, and 10%. Proximate analysis was then performed on EFB and the brown algae. The best quality briquettes were obtained by adding brown algae adhesive at 2.5% concentrate, which resulted in a calorific value of 21,405 J/g. Other characteristics such as moisture content, ash content, volatile matter, and fixed carbon were found to be 7.4%, 4.9%, 79%, and 8.7%, respectively. In addition, the thermal characteristics such as density, flash point, and burning time were found at 0.96 g/cm3, 5.1 second, and 300 minutes, respectively.


2021 ◽  
Vol 921 (1) ◽  
pp. 012054
Author(s):  
A Anshariah ◽  
M Imran ◽  
S Widodo ◽  
UR Irvan

Abstract Coal that is deposited in the same depositional environment, age, and formation will usually have the same characteristics. However, the influence of geological conditions in an area can cause differences in the characteristics of coal in the same formation. This study aims to analyze geological factors that can affect differences in the characteristics of coal in the same depositional environment, age and formation. The study was conducted at three different locations, namely Mallawa District, Maros Regency; Lanne District, Pangkep Regency; and Massenrengpulu Region, Bone Regency. The coal sampling method in the study area uses the channel sampling method (ply by ply) which represents the bottom, middle and top coal seams. The results of the proximate analysis of coal in the Mallawa District Maros Regency showed an average moisture content of 7.78%, an average ash content of 39.99%, volatile matter 32.85%, and fixed carbon 19.39%. While in the area of Lanne District, Pangkep Regency shows an average moisture content of 9.65%, an average ash content of 40.41%, volatile matter 33.80%, and fixed carbon 16.16%. The results of proximate analysis in the Massenrengpulu area of Pangkep Regency showed an average moisture content of 3.86%, an average ash content of 23.16%, volatile matter 35.53%, and fixed carbon 37.46%. Coal from Mallawa and Lanne District has relatively the same characteristics, while the Massenrengpulu coal has lower moisture and ash content, and higher fixed carbon caused by the intrusion of igneous rocks in the area which causes the coal maturation process to be faster than the other two regions.


2015 ◽  
Vol 10 (1) ◽  
pp. 343-349 ◽  
Author(s):  
Dobariya Umesh ◽  
P Sarsavadiya ◽  
Krishna Vaja ◽  
Khardiwar Mahadeo

The study was undertaken to investigate the properties of cotton stalk fuel from the agricultural residues. The whole cotton stalk plant is converted into shredded material with the help of cotton stalk shredder. The capacity of cotton stalk shredder machine is 218 kg/h. The proximate analysis of the shredded cotton stalk in terms of bulk density 34.92 kg / m3 moisture content 13.63 %, volatile matter 74.52 %, ash content (4.95 %, fixed carbon 20.53 % and calorific value of cotton stalk biomass (3827 cal/g) respectively. were showed that agricultural residues are the most potential and their quantitative availability, Since the aim by using shredded cotton stalk as feed stock for energy conversion process of the developed gasifier.


2020 ◽  
Vol 6 (3) ◽  
pp. 197-204
Author(s):  
Rafi Maulana ◽  
Ordas Dewanto ◽  
A Raka Abriyansyah

Indonesia as a country that has ample large coal reserves spread across the Sumatera and Kalimantan islands. The huge potential in the region needs further research to be able to find out the quality and excellence of coal resources in order to know the characteristics in detail, then the research was carried out in the Bengkulu Province area by testing coal sample based on Proximate analysis to obtain accurate coal quality results and analysis of coal characteristics in the area can be carried out. The results show that the coal seams in the Arantiga mine have an average value Inherent Moisture is worth 7.49 %, ASH is worth 9.82 %, Volatile Matter is worth 40.99 %, Fixed Carbon is worth 41.70 %, Total Sulfur is worth 0.34 %, Gross Caloric Value is worth 6305 kcal/kg and including of High Volatile A Bituminous coal type, while the Seluang mine has an average value Inherent Moisture is worth 2.07 %, ASH is worth 22.92 %, Volatile Matter is worth 20.26 %, Fixed Carbon is worth 54.78 %, Total Sulfur is worth 0.55 %, Gross Caloric Value is worth 6365 kcal/kg dan and including of Medium Volatile Bituminous coal type.


2020 ◽  
Vol 23 (2) ◽  
pp. 146-152
Author(s):  
Dilgash Fayeq Yaseen ◽  
Mohammed Amin Yasin Taha ◽  
Hasan Saleem Nabi ◽  
Abdulaziz Jameel Younis

This investigation was done in the laboratory of college of agricultural engineering sciences – University of Duhok to study some wood-charcoal quality produced from some local wood species in Kurdistan region Iraq. In market, the quality of wood charcoal produced from tree species is varied due to divers’ anatomical structure and carbonizing temperature process. As a consequence, understanding the factors controlling the quality of wood charcoal is an important issue for both producers (sellers) and consumers (buyers). In most charcoal factories, wood charcoal are produced without determining of their quality whereas each quality of wood charcoal has its own properties, price and uses. The quality of charcoal made from some selected local wood species (Quercus aegilops, Salix alba, Malus domestica, and Populus alba) were evaluated. The woods species were collected from Zaxo district of Duhok province and were transformed into wood-charcoal using a steel kiln for pyrolysis. The analysis of physical and chemicals such moisture content percentage [MCP] , volatile matter percentage [VMP] , ash content percentage [ACP] and fixed carbon percentage [FCP], of the produced wood-charcoal were proximately resolved using the (ASTM D3176 – 15) method. The results showed, for the first time on all around the Kurdistan region of Iraq, the quality of wood charcoal produced from these wood species. The highest value off moisture content (2.375%) was with Malus domisteca as compared with Populus alba which was (1.000%), highest volatile matter (21.125%) was with Quercus aegilpops compared with Populus alba (4.125%), high ash content recorded (4.875%) with Quercus aegilpops compared with Salix alba (2.250%) and the fixed carbon was greater value in Populus alba which was (92.125%) compared with Quercus aegilpops (72.875%). In addition, these species present significant divergence in term of good quality of wood charcoal and the (populous alba) gave the superior quality of wood charcoal from the rest wood species. Therefore, the results of this study have a high assessment for managers of Kurdistan governmental and private charcoal factories as a suggestion which wood species is suitable in order to achieve better quality of wood charcoal.


Author(s):  
J. M. Makavana ◽  
P. N. Sarsavadia ◽  
P. M. Chauhan

Bio-char is carbon-rich product generated from biomass through batch type slow pyrolysis. In this study, the effects of pyrolysis temperature and residence time on the yield and properties of bio-chars obtained from shredded cotton stalks were investigated. Safely said that the quality of bio-char of shredded cotton stalk obtained at 500°C temperature and 240 min is best out of the all experimental levels of variables of temperature and residence time. At this temperature and residence time, the quality of bio-char in terms higher heating value (8101.3cal /g or 33.89 MJ/kg), nitrogen (1.56%), Carbon (79.30%), and C/N ratio (50.83) respectively. The quality of bio-char for various applications is discussed along with different quality parameters. The bio-char could be used for the production of activated carbon, in fuel applications, and water purification processes. Average bulk density of whole cotton stalk and shredded cotton stalk was found as 29.90 kg/m3 and 147.02 kg/m3 respectively. Thus density was increased by 3.91 times. The value of pH, EC and CEC of shredded cotton stalk biomass was found as 5.59, 0.03 dS/m and 38.84 cmol/kg respectively. Minimum and maximum values pH, EC and CEC of its bio-char was found as 5.85 to9.86, 0.04 to 0.10 dS/m and 38.02 to 24.39 cmol/kg at 200°C and 60 min and; 500°C and 240 min temperature and residence time respectively. Moisture content, ash content, volatile matter and fixed carbon of shredded cotton stalk biomass were found as, 12.5, 5.27, 80.22, and 14.51 (%, d.b) respectively. The minimum and maximum value of bio-char in terms of ash content, volatile matter and fixed carbon of bio-char were found as 5.5 to 15.56, 48.02 to 79.48 and 15.02 to 36.40 (%, d.b) respectively. Calorific value of cotton stalk biomass was found as 3685.3 cal /g. The minimum and maximum higher heating value of its bio-char was found as 4622.0 cal/ g and 8101.3 cal/g at 200°C and 60 min and; 500˚C and 240 min temperature and residence time.


2021 ◽  
Vol 921 (1) ◽  
pp. 012055
Author(s):  
R Rahman ◽  
B Azikin ◽  
D Tahir ◽  
S Widodo

Abstract This study using three types of coal from East Kalimantan and South Sulawesi Mangrove Wood Charcoal which consisted of various compositions. In sample analysis using analysis, namely: proximate, ultimate, and calorific value. Proximate analysis: ash content, volatile matter, moisture content, fixed carbon; ultimate analysis: carbon and sulfur content and the calorific value using the bomb calorimeter method. The results of the proximate analysis showed that the fixed carbon content was obtained in the mixture of MWC 75% + KJA 25% = 52.45%, while the lowest was obtained at IC 100% = 32.86%; The highest volatile matter was obtained at KJA 100% = 44.23%, the lowest was at MWC 75% + KJA 25% = 31.90%, the highest ash content was IC 100% = 9.14% the lowest was at MWC 75% + KJA 25% = 5.94% and the highest moisture content was seen at IC 100% = 15.17% but MWC 75% + IC 25% = 9.52%. The results of the ultimate analysis showed that the lowest sulfur content was in the mixed variation of MWC 75% + KJA 25% = 0.168%, while the highest sulfur content was obtained at IC 100% = 0.874%. However, it was still in the low sulfur category <1. The highest calorific value is obtained by varying the composition at MWC 75% + IC 25% = 5919 cal/gram, while the lowest was obtained at KJA 100% = 4913 cal/gram. So based on this research, the addition of mangrove charcoal is very good for increasing the calorific value.


2014 ◽  
Vol 625 ◽  
pp. 644-647 ◽  
Author(s):  
Sujan Chowdhury ◽  
Abrar Inayat ◽  
Bawadi Abdullah ◽  
Abdul Aziz Omar ◽  
Saibal Ganguly

Hydrogen is a clean and new energy carrier to generate power and effectively turned out through the gasification of organic material such as coal. The main objective of this manuscript is to present an analysis of the coal gasification for the generation of high-purity hydrogen in a lab-scale fixed-bed downdraft gasifier. Better understanding of the rank, formation, structure, composition and calorific value and method of analysis of the material is crucial for the proper utilization of these resources requires. Traditionally the quality of the Coal samples has been determined by their physical and proximate analysis, such as, bulk density, free swelling index, gross calorific value, sulfur, moisture, fixed carbon, volatile matter and ash content. In this study, coal is partially oxidized and ultimately converts into hydrogen rich syngas (CO and H2). As well, approximately 220 kg h−1 of coal would be gasified at 673–1073 K and 46.2 atm with the reactor volume 0.27m3 to obtain approximately 3.8×105 kcal h−1 of thermal energy during over 67% syngas generation with the generation of 110kW electrical powers.


2020 ◽  
Vol 202 ◽  
pp. 04005
Author(s):  
Muhammad Ilham Fatkhurrahman ◽  
Dian Agus Widiarso ◽  
Devina Trisnawati ◽  
Ahmad Zaki Romi ◽  
dan Arya Gustifram

Tissue Preservation Index (TPI) and Gelification Index (GI) are products in coal related to the quality of coal and acid water mining. Research is conducted to know the relationship between the two by means of correlation using polynomial method and pressing method on the environmental diagram of the depositional environtment/facies. The correlation result is obtained that the higher the value of TPI, the value of Inherent Moisture and Volatile Matter is lower and the value of ash content and Fixed Carbon is higher. The higher the value of the GI, then the value of ash content and Fixed Carbon is higher and the value of Volatile Matter is getting lower. The lymnic deposition facies are areas that are located far from the sea and covered by a barrier and composed of land sediment with an active hydrological system. This is what causes minimal acidic water to occur because the sea sulfide does not intervene in the surrounding rocks. In addition, high GI value levels in the research area cause the oxidation process to be low and result in low rock acidity conditions.


2021 ◽  
Vol 23 (2) ◽  
pp. 181-185
Author(s):  
NEENA BAGCHI ◽  

The chemical characterization of the leaves of Sesbania grandiflora were carried out in a quest to evaluate its bioactive potential to cure diseases and its potential as a source of alternate medicine. Fresh leaves of S. grandiflora were collected and powdered for analysis. The proximate analysis of the leaves showed that the proportion of moisture content, volatile matter, ash content and fixed carbon were 5.16%, 67.4%, 17.64%, 9.8% respectively. The results of FTIR revealed the strong bonds between C-H, C-O, C=O, C=C, S=O and N-H in the plant material. Moreover the result of TGA depicts that the highest weight loss occurred at temperature of 486.64° C with a degradation rate of 10.00 K/min in combustion conditions.


Sign in / Sign up

Export Citation Format

Share Document