scholarly journals Charcterization of a medicinal plant Agastya (Sesbania grandiflora)

2021 ◽  
Vol 23 (2) ◽  
pp. 181-185
Author(s):  
NEENA BAGCHI ◽  

The chemical characterization of the leaves of Sesbania grandiflora were carried out in a quest to evaluate its bioactive potential to cure diseases and its potential as a source of alternate medicine. Fresh leaves of S. grandiflora were collected and powdered for analysis. The proximate analysis of the leaves showed that the proportion of moisture content, volatile matter, ash content and fixed carbon were 5.16%, 67.4%, 17.64%, 9.8% respectively. The results of FTIR revealed the strong bonds between C-H, C-O, C=O, C=C, S=O and N-H in the plant material. Moreover the result of TGA depicts that the highest weight loss occurred at temperature of 486.64° C with a degradation rate of 10.00 K/min in combustion conditions.

2015 ◽  
Vol 10 (1) ◽  
pp. 343-349 ◽  
Author(s):  
Dobariya Umesh ◽  
P Sarsavadiya ◽  
Krishna Vaja ◽  
Khardiwar Mahadeo

The study was undertaken to investigate the properties of cotton stalk fuel from the agricultural residues. The whole cotton stalk plant is converted into shredded material with the help of cotton stalk shredder. The capacity of cotton stalk shredder machine is 218 kg/h. The proximate analysis of the shredded cotton stalk in terms of bulk density 34.92 kg / m3 moisture content 13.63 %, volatile matter 74.52 %, ash content (4.95 %, fixed carbon 20.53 % and calorific value of cotton stalk biomass (3827 cal/g) respectively. were showed that agricultural residues are the most potential and their quantitative availability, Since the aim by using shredded cotton stalk as feed stock for energy conversion process of the developed gasifier.


2017 ◽  
Vol 866 ◽  
pp. 168-171
Author(s):  
Udomdeja Polyium ◽  
Amornrat Pigoolthong

The research aims to develop fuel briquettes from sisal waste material mixed with bagasse. Sisal wastes were collected from Hub Kapong Royal Project Phetchaburi Province Thailand. These material were mixed according to the ratios of 90:10, 80:20, 70:30, 60:40 and 50:50 respectively. Characterization of physical and chemical properties of fuel briquettes were determined by percentage moisture content, percentage ash content, percentage volatile matter, percentage fixed carbon, and calorific value with the standard number ASTM 3173, ASTM D 3175, ASTM D 3174, ASTM D 3177 and ASTM D 3286 respectively. The results show that percentage moisture content values of 9.98 - 18.14, percentage volatile matter values of 42.59 - 68.04, percentage ash content values of 16.05 -25.41, percentage fixed carbon values of 5.93 - 13.86 and calorific values of 1,820.52 - 2,485.19 kcal/kg. Fuel briquettes to be used as a fuel substitute for firewood and charcoal.


2021 ◽  
Vol 921 (1) ◽  
pp. 012055
Author(s):  
R Rahman ◽  
B Azikin ◽  
D Tahir ◽  
S Widodo

Abstract This study using three types of coal from East Kalimantan and South Sulawesi Mangrove Wood Charcoal which consisted of various compositions. In sample analysis using analysis, namely: proximate, ultimate, and calorific value. Proximate analysis: ash content, volatile matter, moisture content, fixed carbon; ultimate analysis: carbon and sulfur content and the calorific value using the bomb calorimeter method. The results of the proximate analysis showed that the fixed carbon content was obtained in the mixture of MWC 75% + KJA 25% = 52.45%, while the lowest was obtained at IC 100% = 32.86%; The highest volatile matter was obtained at KJA 100% = 44.23%, the lowest was at MWC 75% + KJA 25% = 31.90%, the highest ash content was IC 100% = 9.14% the lowest was at MWC 75% + KJA 25% = 5.94% and the highest moisture content was seen at IC 100% = 15.17% but MWC 75% + IC 25% = 9.52%. The results of the ultimate analysis showed that the lowest sulfur content was in the mixed variation of MWC 75% + KJA 25% = 0.168%, while the highest sulfur content was obtained at IC 100% = 0.874%. However, it was still in the low sulfur category <1. The highest calorific value is obtained by varying the composition at MWC 75% + IC 25% = 5919 cal/gram, while the lowest was obtained at KJA 100% = 4913 cal/gram. So based on this research, the addition of mangrove charcoal is very good for increasing the calorific value.


2020 ◽  
Vol 15 (1) ◽  
pp. 38-44
Author(s):  
Ana Dewita ◽  
M. Faisal ◽  
Asri Gani

The charcoal produced from oil palm empty fruit bunches pyrolysis can be utilized as environmentally friendly alternative fuel briquettes. This research aimed at improving the quality of these EFB briquettes using brown algae adhesive (alginate). The adhesive was added at 2.5%, 5%, 7.5%, and 10%. Proximate analysis was then performed on EFB and the brown algae. The best quality briquettes were obtained by adding brown algae adhesive at 2.5% concentrate, which resulted in a calorific value of 21,405 J/g. Other characteristics such as moisture content, ash content, volatile matter, and fixed carbon were found to be 7.4%, 4.9%, 79%, and 8.7%, respectively. In addition, the thermal characteristics such as density, flash point, and burning time were found at 0.96 g/cm3, 5.1 second, and 300 minutes, respectively.


This study aimed to characterize the coal in terms of proximate and ultimate analyses. The analytical assessment of properties such as volatile matter, moisture, fixed carbon, and ash content are very important to know the quality of the coal. The proximate analysis results shows that the moisture content varies from 13.4 to 22.6 wt%, the fixed carbon varies from 26.7 and 38 wt%, the ash content varies from 11.9 to 25.7 wt%, the volatile matter varies from 23.8 to 36.5iwt%. The analytical results show that the Carbon content varies from 48.60 to 70.68 wt%, Oxygen content varies from 42.29 to 57.38 wt%, the hydrogen content ranges from 4.43 to 5.28 wt%, the sulphur varies from 1.35 toi3.04 wt%, the Nitrogen content varies from 1.86 to 2.34 wt%. Proximate analysis and calorific data show that Ethiopian coal is in the soft coal series (lignite to bituminous coal) and is genetically classified as humic, sapropelic and mixed coal. The present study helps to characterize the coal type and also highlights the importance of chemical parameters in characterizing the coal besides, tracing the depositional environment and also helps to the economical evolutions of the deposit


Author(s):  
Ashok Patel ◽  
◽  
Basant Agrawal ◽  
B R Rawal ◽  
◽  
...  

In this study, temperature studies were studied on the production of a product from selected eucalyptus leaving samples. The bio-diesel yield from these samples was further determined using non-model methods and analytical pyrolysis-gas chromatography / mass spectrometry (Py-GC / MS). The fresh eucalyptus leaves were obtained from nearby forest of Godhra (Gujarat), India. Results of the Proximate analysis of eucalyptus leaves powder sample study shows that volatile matter, fixed carbon, ash content and moisture content are 61.70 %, 26.37%, 8.36 % and 3.57%, The results of the basic analysis indicate that the carbon, hydrogen, nitrogen, oxygen, and sulfur content is 89.17%, 7.36%, 1.01%, 1.98% and 0.26%, respectively. The higher heating value (HHV) of the biodiesel obtained from the biomass samples is 32.81 MJ/kg. Chemical composition analysis of Eucalyptus Biodiesel carried out and compared with standards. The study revealed that pyro-fuel is not only used as fuel but also can be purified and used as a commodity in the chemical and processing industries.


2021 ◽  
Vol 921 (1) ◽  
pp. 012054
Author(s):  
A Anshariah ◽  
M Imran ◽  
S Widodo ◽  
UR Irvan

Abstract Coal that is deposited in the same depositional environment, age, and formation will usually have the same characteristics. However, the influence of geological conditions in an area can cause differences in the characteristics of coal in the same formation. This study aims to analyze geological factors that can affect differences in the characteristics of coal in the same depositional environment, age and formation. The study was conducted at three different locations, namely Mallawa District, Maros Regency; Lanne District, Pangkep Regency; and Massenrengpulu Region, Bone Regency. The coal sampling method in the study area uses the channel sampling method (ply by ply) which represents the bottom, middle and top coal seams. The results of the proximate analysis of coal in the Mallawa District Maros Regency showed an average moisture content of 7.78%, an average ash content of 39.99%, volatile matter 32.85%, and fixed carbon 19.39%. While in the area of Lanne District, Pangkep Regency shows an average moisture content of 9.65%, an average ash content of 40.41%, volatile matter 33.80%, and fixed carbon 16.16%. The results of proximate analysis in the Massenrengpulu area of Pangkep Regency showed an average moisture content of 3.86%, an average ash content of 23.16%, volatile matter 35.53%, and fixed carbon 37.46%. Coal from Mallawa and Lanne District has relatively the same characteristics, while the Massenrengpulu coal has lower moisture and ash content, and higher fixed carbon caused by the intrusion of igneous rocks in the area which causes the coal maturation process to be faster than the other two regions.


2010 ◽  
Vol 16 (2) ◽  
pp. 169-178 ◽  
Author(s):  
G. Osthoff ◽  
A. Hugo ◽  
P. van Wyk ◽  
M. de Wit ◽  
S. Meyer

Physical characterization of a soymilk powder was carried out by electron microscopy. Chemical characterization was analyzed by proximate analysis, mineral composition by atomic absorption spectrometry, fatty acid composition by gas chromatography and protein composition by electrophoresis. The powder consists of large granules of 60—80 μm, which may be hollow, with smaller granules of 10—20 μm attached to them. Powder particles are covered by a layer of fat. During storage at 25 °C fat is spreading over the surface, while at —12 °C the fat is contracting. This change affected chemical stability, resulting in high level of fat oxidation when stored at 4 °C or 25 °C as well as a decrease in unsaturated fatty acids. Storage also affected the chemical properties of the re-constituted soymilk; the pH of a 12% soy powder suspension increased from 6.68±0.05 to 7.06±0.08 after 12 months of storage. Storage temperature did not affect the pH of the suspension and this change could also not be ascribed to protein aggregation.


2017 ◽  
Vol 25 (5) ◽  
pp. 301-310 ◽  
Author(s):  
Jetsada Posom ◽  
Panmanas Sirisomboon

This research aimed to determine the higher heating value, volatile matter, fixed carbon and ash content of ground bamboo using Fourier transform near infrared spectroscopy as an alternative to bomb calorimetry and thermogravimetry. Bamboo culms used in this study had circumferences ranging from 16 to 40 cm. Model development was performed using partial least squares regression. The higher heating value, volatile matter, fixed carbon and ash content were predicted with coefficients of determination (r2) of 0.92, 0.82, 0.85 and 0.51; root mean square error of prediction (RMSEP) of 122 J g−1, 1.15%, 1.00% and 0.77%; ratio of the standard deviation to standard error of validation (RPD) of 3.66, 2.55, 2.62 and 1.44; and bias of 14.4 J g−1, −0.43%, 0.03% and −0.11%, respectively. This report shows that near infrared spectroscopy is quite successful in predicting the higher heating value, and is usable with screening for the determination of fixed carbon and volatile matter. For ash content, the method is not recommended. The models should be able to predict the properties of bamboo samples which are suitable for achieving higher efficiency for the biomass conversion process.


Sign in / Sign up

Export Citation Format

Share Document