scholarly journals Classification of Architectural Designs using Deep Learning

Architecture style of buildings play’s an important role in various aspects. Architectural style or the construction method affects the human health in multiple ways. Many dynasties are ruled India and constructed various types of monuments. So, In this proposed work popular dynasties like Hoysala dynasty, Vijayanagar empire, Mughal empire, Nizam’s of Hyderabad, Chalukya dynasty etc. are considered for creating dataset for the work. The architects of those times had really good knowledge about the different scientific methods to be used for construction. This project aims at classification of different architectural styles. Automatic identification of different architectural styles would facilitate different applications. The dataset is manually created by downloading images from various websites. Deep learning, inception v3 master algorithm are used. Experiments are performed using tenser flow and bottle neck files are created for validation. Good recognition rate is achieved with a fewer data set.

2016 ◽  
Vol 14 (1) ◽  
pp. 172988141769231 ◽  
Author(s):  
Yingfeng Cai ◽  
Youguo He ◽  
Hai Wang ◽  
Xiaoqiang Sun ◽  
Long Chen ◽  
...  

The emergence and development of deep learning theory in machine learning field provide new method for visual-based pedestrian recognition technology. To achieve better performance in this application, an improved weakly supervised hierarchical deep learning pedestrian recognition algorithm with two-dimensional deep belief networks is proposed. The improvements are made by taking into consideration the weaknesses of structure and training methods of existing classifiers. First, traditional one-dimensional deep belief network is expanded to two-dimensional that allows image matrix to be loaded directly to preserve more information of a sample space. Then, a determination regularization term with small weight is added to the traditional unsupervised training objective function. By this modification, original unsupervised training is transformed to weakly supervised training. Subsequently, that gives the extracted features discrimination ability. Multiple sets of comparative experiments show that the performance of the proposed algorithm is better than other deep learning algorithms in recognition rate and outperforms most of the existing state-of-the-art methods in non-occlusion pedestrian data set while performs fair in weakly and heavily occlusion data set.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
BinBin Zhang ◽  
Fumin Zhang ◽  
Xinghua Qu

Purpose Laser-based measurement techniques offer various advantages over conventional measurement techniques, such as no-destructive, no-contact, fast and long measuring distance. In cooperative laser ranging systems, it’s crucial to extract center coordinates of retroreflectors to accomplish automatic measurement. To solve this problem, this paper aims to propose a novel method. Design/methodology/approach We propose a method using Mask RCNN (Region Convolutional Neural Network), with ResNet101 (Residual Network 101) and FPN (Feature Pyramid Network) as the backbone, to localize retroreflectors, realizing automatic recognition in different backgrounds. Compared with two other deep learning algorithms, experiments show that the recognition rate of Mask RCNN is better especially for small-scale targets. Based on this, an ellipse detection algorithm is introduced to obtain the ellipses of retroreflectors from recognized target areas. The center coordinates of retroreflectors in the camera coordinate system are obtained by using a mathematics method. Findings To verify the accuracy of this method, an experiment was carried out: the distance between two retroreflectors with a known distance of 1,000.109 mm was measured, with 2.596 mm root-mean-squar error, meeting the requirements of the coarse location of retroreflectors. Research limitations/implications The research limitations/implications are as follows: (i) As the data set only has 200 pictures, although we have used some data augmentation methods such as rotating, mirroring and cropping, there is still room for improvement in the generalization ability of detection. (ii) The ellipse detection algorithm needs to work in relatively dark conditions, as the retroreflector is made of stainless steel, which easily reflects light. Originality/value The originality/value of the article lies in being able to obtain center coordinates of multiple retroreflectors automatically even in a cluttered background; being able to recognize retroreflectors with different sizes, especially for small targets; meeting the recognition requirement of multiple targets in a large field of view and obtaining 3 D centers of targets by monocular model-based vision.


2021 ◽  
Author(s):  
Tomochika Fujisawa ◽  
Victor Noguerales ◽  
Emmanouil Meramveliotakis ◽  
Anna Papadopoulou ◽  
Alfried P Vogler

Complex bulk samples of invertebrates from biodiversity surveys present a great challenge for taxonomic identification, especially if obtained from unexplored ecosystems. High-throughput imaging combined with machine learning for rapid classification could overcome this bottleneck. Developing such procedures requires that taxonomic labels from an existing source data set are used for model training and prediction of an unknown target sample. Yet the feasibility of transfer learning for the classification of unknown samples remains to be tested. Here, we assess the efficiency of deep learning and domain transfer algorithms for family-level classification of below-ground bulk samples of Coleoptera from understudied forests of Cyprus. We trained neural network models with images from local surveys versus global databases of above-ground samples from tropical forests and evaluated how prediction accuracy was affected by: (a) the quality and resolution of images, (b) the size and complexity of the training set and (c) the transferability of identifications across very disparate source-target pairs that do not share any species or genera. Within-dataset classification accuracy reached 98% and depended on the number and quality of training images and on dataset complexity. The accuracy of between-datasets predictions was reduced to a maximum of 82% and depended greatly on the standardisation of the imaging procedure. When the source and target images were of similar quality and resolution, albeit from different faunas, the reduction of accuracy was minimal. Application of algorithms for domain adaptation significantly improved the prediction performance of models trained by non-standardised, low-quality images. Our findings demonstrate that existing databases can be used to train models and successfully classify images from unexplored biota, when the imaging conditions and classification algorithms are carefully considered. Also, our results provide guidelines for data acquisition and algorithmic development for high-throughput image-based biodiversity surveys.


2021 ◽  
Vol 10 (2) ◽  
pp. 1065-1069
Author(s):  
H. Park ◽  
G. Moon ◽  
K. Kim

Coronavirus disease (COVID-19) is a significant disaster worldwide from December 2019 to the present. Information on the COVID-19 is grasped through news media or social media, and researchers are conducting various research. This is because we are trying to shorten the time to be aware of the COVID-19 disaster situation. In this paper, we build a chatbot so that it can be used in emergencies using the COVID-19 data set and investigate how the analysis is changing the situation with deep learning.


Author(s):  
Lucas Garcia Nachtigall ◽  
Ricardo Matsumura Araujo ◽  
Gilmar Ribeiro Nachtigall

Rapid diagnosis of symptoms caused by pest attack, diseases and nutritional or physiological disorders in apple orchards is essential to avoid greater losses. This paper aimed to evaluate the efficiency of Convolutional Neural Networks (CNN) to automatically detect and classify symptoms of diseases, nutritional deficiencies and damage caused by herbicides in apple trees from images of their leaves and fruits. A novel data set was developed containing labeled examples consisting of approximately 10,000 images of leaves and apple fruits divided into 12 classes, which were classified by algorithms of machine learning, with emphasis on models of deep learning. The results showed trained CNNs can overcome the performance of experts and other algorithms of machine learning in the classification of symptoms in apple trees from leaves images, with an accuracy of 97.3% and obtain 91.1% accuracy with fruit images. In this way, the use of Convolutional Neural Networks may enable the diagnosis of symptoms in apple trees in a fast, precise and usual way.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0253764
Author(s):  
Qingfang He ◽  
Guang Cheng ◽  
Huimin Ju

Breast cancer is the cancer with the highest incidence of malignant tumors in women, which seriously endangers women’s health. With the help of computer vision technology, it has important application value to automatically classify pathological tissue images to assist doctors in rapid and accurate diagnosis. Breast pathological tissue images have complex and diverse characteristics, and the medical data set of breast pathological tissue images is small, which makes it difficult to automatically classify breast pathological tissues. In recent years, most of the researches have focused on the simple binary classification of benign and malignant, which cannot meet the actual needs for classification of pathological tissues. Therefore, based on deep convolutional neural network, model ensembleing, transfer learning, feature fusion technology, this paper designs an eight-class classification breast pathology diagnosis model BCDnet. A user inputs the patient’s breast pathological tissue image, and the model can automatically determine what the disease is (Adenosis, Fibroadenoma, Tubular Adenoma, Phyllodes Tumor, Ductal Carcinoma, Lobular Carcinoma, Mucinous Carcinoma or Papillary Carcinoma). The model uses the VGG16 convolution base and Resnet50 convolution base as the parallel convolution base of the model. Two convolutional bases (VGG16 convolutional base and Resnet50 convolutional base) obtain breast tissue image features from different fields of view. After the information output by the fully connected layer of the two convolutional bases is fused, it is classified and output by the SoftMax function. The model experiment uses the publicly available BreaKHis data set. The number of samples of each class in the data set is extremely unevenly distributed. Compared with the binary classification, the number of samples in each class of the eight-class classification is also smaller. Therefore, the image segmentation method is used to expand the data set and the non-repeated random cropping method is used to balance the data set. Based on the balanced data set and the unbalanced data set, the BCDnet model, the pre-trained model Resnet50+ fine-tuning, and the pre-trained model VGG16+ fine-tuning are used for multiple comparison experiments. In the comparison experiment, the BCDnet model performed outstandingly, and the correct recognition rate of the eight-class classification model is higher than 98%. The results show that the model proposed in this paper and the method of improving the data set are reasonable and effective.


Author(s):  
Shengbo Liu ◽  
Pengyuan Fu ◽  
Lei Yan ◽  
Jian Wu ◽  
Yandong Zhao

Deep learning classification based on 3D point clouds has gained considerable research interest in recent years.The classification and quantitative analysis of wood defects are of great significance to the wood processing industry. In order to solve the problems of slow processing and low robustness of 3D data. This paper proposes an improvement based on littlepoint CNN lightweight deep learning network, adding BN layer. And based on the data set made by ourselves, the test is carried out. The new network bnlittlepoint CNN has been improved in speed and recognition rate. The correct rate of recognition for non defect log, non defect log and defect log as well as defect knot and dead knot can reach 95.6%.Finally, the "dead knot" and "loose knot" are quantitatively analyzed based on the "integral" idea, and the volume and surface area of the defect are obtained to a certain extent,the error is not more than 1.5% and the defect surface reconstruction is completed based on the triangulation idea.


Author(s):  
Guimei Wang ◽  
Xuehui Li ◽  
Lijie Yang

Real-time and accurate measurement of coal quantity is the key to energy-saving and speed regulation of belt conveyor. The electronic belt scale and the nuclear scale are the commonly used methods for detecting coal quantity. However, the electronic belt scale uses contact measurement with low measurement accuracy and a large error range. Although nuclear detection methods have high accuracy, they have huge potential safety hazards due to radiation. Due to the above reasons, this paper presents a method of coal quantity detection and classification based on machine vision and deep learning. This method uses an industrial camera to collect the dynamic coal quantity images of the conveyor belt irradiated by the laser transmitter. After preprocessing, skeleton extraction, laser line thinning, disconnection connection, image fusion, and filling, the collected images are processed to obtain coal flow cross-sectional images. According to the cross-sectional area and the belt speed of the belt conveyor, the coal volume per unit time is obtained, and the dynamic coal quantity detection is realized. On this basis, in order to realize the dynamic classification of coal quantity, the coal flow cross-section images corresponding to different coal quantities are divided into coal type images to establish the coal quantity data set. Then, a Dense-VGG network for dynamic coal classification is established by the VGG16 network. After the network training is completed, the dynamic classification performance of the method is verified through the experimental platform. The experimental results show that the classification accuracy reaches 94.34%, and the processing time of a single frame image is 0.270[Formula: see text]s.


2017 ◽  
Author(s):  
Ariel Rokem ◽  
Yue Wu ◽  
Aaron Lee

AbstractDeep learning algorithms have tremendous potential utility in the classification of biomedical images. For example, images acquired with retinal optical coherence tomography (OCT) can be used to accurately classify patients with adult macular degeneration (AMD), and distinguish them from healthy control patients. However, previous research has suggested that large amounts of data are required in order to train deep learning algorithms, because of the large number of parameters that need to be fit. Here, we show that a moderate amount of data (data from approximately 1,800 patients) may be enough to reach close-to-maximal performance in the classification of AMD patients from OCT images. These results suggest that deep learning algorithms can be trained on moderate amounts of data, provided that images are relatively homogenous, and the effective number of parameters is sufficiently small. Furthermore, we demonstrate that in this application, cross-validation with a separate test set that is not used in any part of the training does not differ substantially from cross-validation with a validation data-set used to determine the optimal stopping point for training.


2018 ◽  
pp. 1-8 ◽  
Author(s):  
Okyaz Eminaga ◽  
Nurettin Eminaga ◽  
Axel Semjonow ◽  
Bernhard Breil

Purpose The recognition of cystoscopic findings remains challenging for young colleagues and depends on the examiner’s skills. Computer-aided diagnosis tools using feature extraction and deep learning show promise as instruments to perform diagnostic classification. Materials and Methods Our study considered 479 patient cases that represented 44 urologic findings. Image color was linearly normalized and was equalized by applying contrast-limited adaptive histogram equalization. Because these findings can be viewed via cystoscopy from every possible angle and side, we ultimately generated images rotated in 10-degree grades and flipped them vertically or horizontally, which resulted in 18,681 images. After image preprocessing, we developed deep convolutional neural network (CNN) models (ResNet50, VGG-19, VGG-16, InceptionV3, and Xception) and evaluated these models using F1 scores. Furthermore, we proposed two CNN concepts: 90%-previous-layer filter size and harmonic-series filter size. A training set (60%), a validation set (10%), and a test set (30%) were randomly generated from the study data set. All models were trained on the training set, validated on the validation set, and evaluated on the test set. Results The Xception-based model achieved the highest F1 score (99.52%), followed by models that were based on ResNet50 (99.48%) and the harmonic-series concept (99.45%). All images with cancer lesions were correctly determined by these models. When the focus was on the images misclassified by the model with the best performance, 7.86% of images that showed bladder stones with indwelling catheter and 1.43% of images that showed bladder diverticulum were falsely classified. Conclusion The results of this study show the potential of deep learning for the diagnostic classification of cystoscopic images. Future work will focus on integration of artificial intelligence–aided cystoscopy into clinical routines and possibly expansion to other clinical endoscopy applications.


Sign in / Sign up

Export Citation Format

Share Document