scholarly journals Experimental Research on Strength of Concrete Prepared by using Coarse Aggregate from Concrete Debris

Cement is the blend of cement, fine aggregate, coarse aggregate with addition of water. In this coarse aggregate plays the main role. But the resources of coarse aggregate get reduces day by day. So we have to found out the alternate way. The complete quantum of waste from development industry is evaluated to be 12 to 14.7 million tons for each annum out of which 7 to 8 million tons are concrete and block squander in India. These days, practically all obliterated cement has been for the most part dumped to landfills. As concrete is a basic, masscreated material in the development business, endeavours have been made to reuse and to monitor it. Solid reusing have as of late turned out to be significant parts of the development business. Solid reusing can be cultivated by reusing solid items, and after that prepared into optional crude materials as filling materials, street bases and sub bases or total for the creation of new concrete. The utilization of reused totals from development and destruction squanders is indicating planned application in development as option in contrast to essential totals. It preserves regular assets and lessens the space required for the landfill transfer. Recycled aggregates are comprised of crushed and graded materials that have been utilized in the development. The point of our research is to decide the characteristic quality of reused totals for application in basic individuals, which can give a superior comprehension on the properties of reused totals as an alternate material to coarse aggregate in structural elements. By using this material the area for damping the concrete debris in the landfills and the emission of CO2 during the mining of the aggregates can be minimized. Reduces the impact on landfills by which the land area can be used for other useful purposes like construction of transmission towers, mobile towers etc., Makes the cost investment funds in the transportation of total, and waste items and in waste transfer. There are both environmental and economic benefits of using recycled concrete aggregate

2018 ◽  
Vol 10 (11) ◽  
pp. 3862 ◽  
Author(s):  
Alena Sicakova ◽  
Karol Urban

Application of recycled aggregates (RA) for concrete production is limited due to their poor quality. While the environmental benefits of using the RA are well accepted, some unsolved problems prevent this type of material from wide application in structural concrete. The research and development of techniques which can minimize the adverse effect of RA on the concrete properties are highly requested. A specific mixing approach can also be helpful; here, mineral additives play a significant role for improvement of RA performance within the mixing process. However, delivery process can influence the homogeneity and uniformity of the concrete mixtures, resulting in negative effect on technical parameters. In this study, the impact of delivery time (0 min, 45 min, and 90 min) on the set of hardened concrete properties is presented while the three-stage mixing is used. Two kinds of additives—fly ash (FA) and recycled concrete powder (RCP)—were tested to coat the coarse fraction of recycled concrete aggregate (RCA) in the first step of mixing. For comparison, cement as coating material and natural aggregate instead the RCA were also used. The following parameters were tested after 28 days of setting and hardening: density, compressive strength, splitting tensile strength, water absorption capacity, and depth of penetration of water under pressure. Generally, 90 min of working with concrete mixtures left no significantly negative influence on tested characteristics. Based on ANOVA results, with prolonged discharge time, the changes in composition of the mixtures become less important for compressive strength, density, and water absorption.


2020 ◽  
Vol 8 (1) ◽  
Author(s):  
Idi Priyono ◽  
Meiske Widyarti, Erizal

An excessive extraction of natural resources for aggregate in concrete mix can caused an environmental degradation.  According to Indonesia ministry of industry in 2017, the use of cement is predicted will reach 84,96 million tons, that can affected the use of aggregate for concrete mix are quadruplet to 250 – 350 million tons. Opimally, the use of recycled material is green method that can reduce an excessive extraction of natural aggregates and keep an environmental sustain. The aim of this study is to obtain recycled aggregate concrete compressive strength and examine recycled aggregate concrete quality in days 3, 7, 28, 35, and 90 along with a proposal of the use of recycled aggregate concrete as a building construction material. This research used experimental method of SNI 03-2834-2002 the standard of normal concrete mix design for f’c 25 MPa then built five types of concrete mix of REC B, REC C, REC D, REC E, and REC F with every types of concrete has four sample are used for compressive strength test. The fine recycled paving block aggregate (RPA) were used partially to substituted a fine recycled brick aggregate (RBA) at 0%, 25%, 50%, 75%, and 100% by weigth. The result of this study showed the mixed concrete REC D with RCA 100%, RPA 50% and RBA 50% in 28 days is generate highest compressive strength than other recycle aggregates concrete mixes. Compressive strength at 28 days in a mix codes REC B, REC C, REC D, REC E and REC F are 18,12 MPa; 18,36 MPa; 19,35 MPa;16,69 MPa; and 16,39 MPa. The results show that it is feasible to replace a natural aggregate entirely by recycled aggregates. With compressive strength over 17 MPa at 28 days, mix codes REC B, REC C and REC D are recommended to use the recycled aggregate concrete for structure of residential buildings but mix codes REC E and REC F aren’t recommended and only allowed for non-structural concrete such as separate wall (SNI 8140:2016). Based on SNI 03-0691-1996 about solid brick concrete (paving block), recycle aggregate concrete with mix code of REC B, REC C, and REC D are able to use on paving block with B quality such as parking lot. While, recycled aggregate concrete with mix code of REC E and REC F are able to use on paving block with C and D quality which used for pedestrian, garden and other use. 


2020 ◽  
Vol 9 (1) ◽  
pp. 2188-2193

This paper aims to develop and evaluate the performance of concrete made with recycled concrete aggregates (RCA) and dune sand (DS) in addition with steel fibers (SF). This work is mainly intended to find the effective ways to reutilize the recycled concrete aggregates as coarse aggregate and due to sand demand dune sand were used as a fine aggregate. Different mechanical and durability properties of recycled concrete aggregates (RCA) and dune sand (DS) concrete mixtures were evaluated. To ensure the properties of cement, fine aggregate, coarse aggregate, recycled concrete aggregate and dune sand preliminary test were determined. Mix design is formulated based on its properties and requirements. Experimentation has been done by using M25 grade concrete. Ordinary Portland cement is used. Fine aggregate and coarse aggregate were partially replaced by recycled concrete aggregates and dune sand at different proportions (25%, 50%, 75%) in addition with 0.25% of steel fibers. Various strengths such as tensile strength, compressive strength, flexure strength and modulus of elasticity are determined. In particular for cube different tests such as non-destructive test (NDT), sorptivity, permeability and acid test has been done. It has been observed that the M2 mix (50% of recycled concrete aggregates and dune sand) has produced better results comparatively.


2009 ◽  
Vol 1 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Yong P.C. ◽  
Teo D.C.L

In this rapid industrialised world, recycling construction material plays an important role to preserve the natural resources. In this research, recycled concrete aggregates (RCA) from site-tested concrete specimens were used. These consist of 28-days concrete cubes after compression test obtained from a local construction site. These concrete cubes are crushed to suitable size and reused as recycled coarse aggregate. The amount of recycled concrete aggregate used in this research is approximately 200 kg. Many researchers state that recycled aggregates are only suitable for non-structural concrete application. This research, however, shows that the recycled aggregates that are obtained from site-tested concrete specimen make good quality concrete. The compressive strength of recycled aggregate concrete (RAC) is found to be higher than the compressive strength of normal concrete. Recycled aggregate concrete is in close proximity to normal concrete in terms of split tensile strength, flexural strength and wet density. The slump of recycled aggregate concrete is low and that can be improved by using saturated surface dry (SSD) coarse aggregate.


2021 ◽  
Vol 930 (1) ◽  
pp. 012100
Author(s):  
E N Cahya ◽  
R Haribowo ◽  
E Arifi

Abstract Predicting the infiltration rate on inclined surfaces is a pending case, especially when compared to rain intensity. The inclined surface has less ability to generate ponding, leading to higher runoff and higher erosion rates. In the rainy season, on the highway with a very steep slope, erosion usually occurs and becomes very dangerous. By using porous concrete, it is expected to receive higher infiltration and less runoff. This study aimed to determine the impact of the inclined surface of porous concrete on infiltration capacity. The research was conducted using both natural coarse aggregate and recycled coarse aggregate made from concrete waste. The infiltration and permeability test were conducted using porous concrete slabs under 0 to 30% inclined surface. It was shown that the infiltration rate is getting lower as the surface is being steeper. It was also shown that porous concrete made from recycled coarse aggregate has higher performance on permeability and infiltration rate compared to porous concrete made from the natural one.


2009 ◽  
Vol 620-622 ◽  
pp. 255-258 ◽  
Author(s):  
Cheol Woo Park

As the amount of waste concrete has been increased and recycling technique advances, this study investigates the applicability of recycled concrete aggregate for concrete structures. In addition fly ash, the industrial by-product, was considered in the concrete mix. Experimental program performed compressive strength and chloride penetration resistance tests with various replacement levels of fine recycled concrete aggregate and fly ash. In most case, the design strength, 40MPa, was obtained. It was known that the replacement of the fine aggregate with fine RCA may have greater influence on the strength development rather than the addition of fly ash. It is recommended that when complete coarse aggregate is replaced with RCA the fine RCA replacement should be less than 60%. The recycled aggregate concrete can achieve sufficient resistance to the chloride ion penetration and the resistance can be more effectively controlled by adding fly ash. It I finally conclude that the recycled concrete aggregate can be successfully used in the construction field and the recycling rate of waste concrete and flay ash should be increased without causing significant engineering problems.


2021 ◽  
Vol 3 (3) ◽  
pp. 459-468
Author(s):  
Yanti ◽  
Rais Rachman ◽  
Alpius

The research objective focuses on testing the characteristics of the Laston Lapis Aus mixture, the aggregate taken later to be studied is the aggregate of Concrete Waste. The method used in this study included testing the properties of coarse aggregate, fine aggregate and filler, after that the Laston Lapis Aus mixture design was carried out after that the marshall test was carried out while the marshalltest was carried out namely the conventional marshall to get the characteristic value. The results showed that the characteristics of the pavement material in the form of aggregates from Concrete Waste tested the 2018 Bina Marga General Specifications as road layers. Through Marshall testing, the characteristics of the Laston Lapis Aus mixture were abtained with asphalt levels of 5,50%, 6,00%, 6,50%, 7,00%, and 7,50%.


2012 ◽  
Vol 509 ◽  
pp. 119-122
Author(s):  
Wei Zhou ◽  
Ling Huan Lu ◽  
Zhen Li

The impact of recycled fine aggregate and powder on the mechanics and thermal performance of recycled concrete hollow blocks was discussed in this paper. The results showed that 30% recycled fine aggregate and powder have slight affect on the strength of recycled concrete hollow blocks. But the strength reduced significantly when the replacement is above 50%. The impact of recycled fine aggregate and powder on the performance of concrete hollow blocks with high strength grade is notable . The heat transfer coefficient of recycled concrete hollow blocks with 30% recycled fine aggregate and powder was equivalently to ordinary concrete hollow blocks.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4612
Author(s):  
Dong Viet Phuong Tran ◽  
Abbas Allawi ◽  
Amjad Albayati ◽  
Thi Nguyen Cao ◽  
Ayman El-Zohairy ◽  
...  

This paper reports an evaluation of the properties of medium-quality concrete incorporating recycled coarse aggregate (RCA). Concrete specimens were prepared with various percentages of the RCA (25%, 50%, 75%, and 100%). The workability, mechanical properties, and durability in terms of abrasion of cured concrete were examined at different ages. The results reveal insignificant differences between the recycled concrete (RC) and reference concrete in terms of the mechanical and durability-related measurements. Meanwhile, the workability of the RC reduced vastly since the replacement of the RCA reached 75% and 100%. The ultrasound pulse velocity (UPV) results greatly depend on the porosity of concrete and the RC exhibited higher porosity than that of the reference concrete, particularly at the transition zone between the RCA and the new paste. Therefore, the sound transmission in the RC required longer times than that in the reference concrete. Moreover, a predictive equation relating the compressive strength to the UPV was developed.


2019 ◽  
Vol 9 (1) ◽  
pp. 3832-3835 ◽  
Author(s):  
A. R. Sandhu ◽  
M. T. Lakhiar ◽  
A. A. Jhatial ◽  
H. Karira ◽  
Q. B. Jamali

As the demand for concrete rises, the concrete materials demand increases. Aggregates occupy 75% of concrete. A vast amount of aggregates is utilized in concrete while aggregate natural resources are reducing. To overcome this problem, River Indus sand (RIS) and recycled concrete aggregate (RCA) were utilized as fine and coarse aggregate respectively. The aim of this experimental investigation is to evaluate the workability, and compressive and tensile strength of concrete utilizing RIS and RCA. Concrete samples of 1:2:4 proportions were cast, water cured for 7, 14, 21 and 28 days, and tested for compressive and tensile strength. The outcomes demonstrate that concrete possessed less workability when RIS and RCA were utilized. It was predicted that compressive strength of concrete would reduce up to 1.5% when 50% RIS and 50% RCA were utilized in concrete and 11.5% when natural aggregate was fully replaced by RIS and RCA, whereas the tensile strength decreased up to 1.60% when 50% by 12% respectively.


Sign in / Sign up

Export Citation Format

Share Document