scholarly journals A Comparative Study of Weather Forecasting Simulation Models through Sensors for Accurate Monsoon Predictions in the Indian Ocean

When Monsoon depressions form over the seas, the Moderate Resolution Imaging Spectroradiometer (MODIS) provides humidity and high-horizontal resolution temperature details about the depressions. These high-resolution satellite data related to temperature and humidity can improve the poor predicting rate of depressions [1]. Using three-dimensional variational data assimilation (3DVAR) and with the help of humidity profiles along with MODIS temperature. We can achieve an advanced prospect of detection and a larger value of (ETS) equitable threat score observed over 48 hours collected precipitation with respect to the control run. The 3DVAR assimilation of Doppler Weather Radar wind data associated with Indian Meteorological Department (IMD) surface data and upper air data helped in the improvements in the simulation of strong gradients associated with horizontal wind speed ,higher warm core temperature , high vertical velocity & better precipitation and spatial distribution.[2]. The effect of Spectral sensor microwave imager (SSM/I), humidity profiles, use of Advanced TIROS Vertical Sounder (ATOVS) temperature and total precipitable water (TPW) helped in improving the ‘‘forecast impact’’ parameters of ‘‘bias score’’ and ‘‘equitable threat score’’ with respect to the assimilation of satellite observation[3] . In this paper we have discussed a comparative study of different proposed techniques to analyze its effects in improving the low prediction rates of depressions.

2017 ◽  
Vol 34 (6) ◽  
pp. 1371-1386 ◽  
Author(s):  
Benjamin Witschas ◽  
Stephan Rahm ◽  
Andreas Dörnbrack ◽  
Johannes Wagner ◽  
Markus Rapp

AbstractAirborne coherent Doppler wind lidar measurements, acquired during the Gravity Wave Life-Cycle (GW-LCYCLE) I field campaign performed from 2 to 14 December 2013 in Kiruna, Sweden, are used to investigate internal gravity waves (GWs) induced by flow across the Scandinavian Mountains. Vertical wind speed is derived from lidar measurements with a mean bias of less than 0.05 m s−1 and a standard deviation of 0.2 m s−1 by correcting horizontal wind projections onto the line-of-sight direction by means of ECMWF wind data. The horizontal wind speed and direction are retrieved from lidar measurements by applying a velocity–azimuth display scan and a spectral accumulation technique, leading to a horizontal resolution of about 9 km along the flight track and a vertical resolution of 100 m, respectively. Both vertical and horizontal wind measurements are valuable for characterizing GW properties as demonstrated by means of a flight performed on 13 December 2013 acquired during weather conditions favorable for orographic GW excitation. Wavelet power spectra of the vertical wind speed indicate that the horizontal GW wavelengths lay mainly between 10 and 30 km and that the GW amplitude above the mountain ridge decreases with increasing altitude. Additionally, the perturbations of the horizontal wind speed are analyzed, showing horizontal wavelengths in the excitation region of 100–125 km with upwind-tilted wave fronts. By means of elevation power spectra, it is revealed that vertical wind power spectra are dominated by the short-wave elevation part, whereas horizontal wind perturbations are dominated by the long-wave part.


2008 ◽  
Vol 16 ◽  
pp. 137-142 ◽  
Author(s):  
F. Mesinger

Abstract. Among the wide variety of performance measures available for the assessment of skill of deterministic precipitation forecasts, the equitable threat score (ETS) might well be the one used most frequently. It is typically used in conjunction with the bias score. However, apart from its mathematical definition the meaning of the ETS is not clear. It has been pointed out (Mason, 1989; Hamill, 1999) that forecasts with a larger bias tend to have a higher ETS. Even so, the present author has not seen this having been accounted for in any of numerous papers that in recent years have used the ETS along with bias "as a measure of forecast accuracy". A method to adjust the threat score (TS) or the ETS so as to arrive at their values that correspond to unit bias in order to show the model's or forecaster's accuracy in \\textit{placing} precipitation has been proposed earlier by the present author (Mesinger and Brill, the so-called dH/dF method). A serious deficiency however has since been noted with the dH/dF method in that the hypothetical function that it arrives at to interpolate or extrapolate the observed value of hits to unit bias can have values of hits greater than forecast when the forecast area tends to zero. Another method is proposed here based on the assumption that the increase in hits per unit increase in false alarms is proportional to the yet unhit area. This new method removes the deficiency of the dH/dF method. Examples of its performance for 12 months of forecasts by three NCEP operational models are given.


2009 ◽  
Vol 2 (1) ◽  
pp. 151-157 ◽  
Author(s):  
C. Marrero ◽  
O. Jorba ◽  
E. Cuevas ◽  
J. M. Baldasano

Abstract. In November 2005 an extratropical storm named Delta affected the Canary Islands (Spain). The high sustained wind and intense gusts experienced caused significant damage. A numerical sensitivity study of Delta was conducted using the Weather Research & Forecasting Model (WRF-ARW). A total of 27 simulations were performed. Non-hydrostatic and hydrostatic experiments were designed taking into account physical parameterizations and geometrical factors (size and position of the outer domain, definition or not of nested grids, horizontal resolution and number of vertical levels). The Factor Separation Method was applied in order to identify the major model sensitivity parameters under this unusual meteorological situation. Results associated to percentage changes relatives to a control run simulation demonstrated that boundary layer and surface layer schemes, horizontal resolutions, hydrostaticity option and nesting grid activation were the model configuration parameters with the greatest impact on the 48 h maximum 10 m horizontal wind speed solution.


2018 ◽  
Vol 11 (9) ◽  
pp. 5075-5085 ◽  
Author(s):  
Boming Liu ◽  
Yingying Ma ◽  
Jiqiao Liu ◽  
Wei Gong ◽  
Wei Wang ◽  
...  

Abstract. The atmospheric boundary layer is an important atmospheric feature that affects environmental health and weather forecasting. In this study, we proposed a graphics algorithm for the derivation of atmospheric boundary layer height (BLH) from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data. Owing to the differences in scattering intensity between molecular and aerosol particles, the total attenuated backscatter coefficient 532 and attenuated backscatter coefficient 1064 were used simultaneously for BLH detection. The proposed algorithm transformed the gradient solution into graphics distribution solution to overcome the effects of large noise and improve the horizontal resolution. This method was then tested with real signals under different horizontal smoothing numbers (1, 3, 15 and 30). Finally, the results of BLH obtained by CALIPSO data were compared with the results retrieved by the ground-based lidar measurements. Under the horizontal smoothing number of 15, 12 and 9, the correlation coefficients between the BLH derived by the proposed algorithm and ground-based lidar were both 0.72. Under the horizontal smoothing number of 6, 3 and 1, the correlation coefficients between the BLH derived by graphics distribution method (GDM) algorithm and ground-based lidar were 0.47, 0.14 and 0.12, respectively. When the horizontal smoothing number was large (15, 12 and 9), the CALIPSO BLH derived by the proposed method demonstrated a good correlation with ground-based lidar. The algorithm provided a reliable result when the horizontal smoothing number was greater than 9. This finding indicated that the proposed algorithm can be applied to the CALIPSO satellite data with 3 and 5 km horizontal resolution.


2012 ◽  
Vol 12 (7) ◽  
pp. 2225-2240 ◽  
Author(s):  
F. T. Couto ◽  
R. Salgado ◽  
M. J. Costa

Abstract. This paper constitutes a step towards the understanding of some characteristics associated with high rainfall amounts and flooding on Madeira Island. The high precipitation events that occurred during the winter of 2009/2010 have been considered with three main goals: to analyze the main atmospheric characteristics associated with the events; to expand the understanding of the interaction between the island and the atmospheric circulations, mainly the effects of the island on the generation or intensification of orographic precipitation; and to evaluate the performance of high resolution numerical modeling in simulating and forecasting heavy precipitation events over the island. The MESO-NH model with a horizontal resolution of 1 km is used, as well as rain gauge data, synoptic charts and measurements of precipitable water obtained from the Atmospheric InfraRed Sounder (AIRS). The results confirm the influence of the orographic effects on precipitation over Madeira as well as the tropical–extratropical interaction, since atmospheric rivers were detected in six out of the seven cases analyzed, acting as a low level moisture supplier, which together with the orographic lifting induced the high rainfall amounts. Only in one of the cases the presence of a low pressure system was identified over the archipelago.


2011 ◽  
Vol 12 (1) ◽  
pp. 27-44 ◽  
Author(s):  
Michael Kunz

Abstract Simulations of orographic precipitation over the low mountain ranges of southwestern Germany and eastern France with two different physics-based linear precipitation models are presented. Both models are based on 3D airflow dynamics from linear theory and consider advection of condensed water and leeside drying. Sensitivity studies for idealized conditions and a real case study show that the amount and spatial distribution of orographic precipitation is strongly controlled by characteristic time scales for cloud and hydrometeor advection and background precipitation due to large-scale lifting. These parameters are estimated by adjusting the model results on a 2.5-km grid to observed precipitation patterns for a sample of 40 representative orography-dominated stratiform events (24 h) during a calibration period (1971–80). In general, the best results in terms of lowest rmse and bias are obtained for characteristic time scales of 1600 s and background precipitation of 0.4 mm h−1. Model simulations of a sample of 84 events during an application period (1981–2000) with fixed parameters demonstrate that both models are able to reproduce quantitatively precipitation patterns obtained from observations and reanalyses from a numerical model [Consortium for Small-scale Modeling (COSMO)]. Combining model results with observation data shows that heavy precipitations over mountains are restricted to situations with strong atmospheric forcings in terms of synoptic-scale lifting, horizontal wind speed, and moisture content.


2021 ◽  
Author(s):  
Steven Knoop ◽  
Fred Bosveld ◽  
Marijn de Haij ◽  
Arnoud Apituley

<p>Atmospheric motion and turbulence are essential parameters for weather and topics related to air quality. Therefore, wind profile measurements play an important role in atmospheric research and meteorology. One source of wind profile data are Doppler wind lidars, which are laser-based remote sensing instruments that measure wind speed and wind direction up to a few hundred meters or even a few kilometers. Commercial wind lidars use the laser wavelength of 1.5 µm and therefore backscatter is mainly from aerosols while clear air backscatter is minimal, limiting the range to the boundary layer typically.</p><p>We have carried out a two-year intercomparison of the ZephIR 300M (ZX Lidars) short-range wind lidar and tall mast wind measurements at Cabauw [1]. We have focused on the (height-dependent) data availability of the wind lidar under various meteorological conditions and the data quality through a comparison with in situ wind measurements at several levels in the 213m tall meteorological mast. We have found an overall availability of quality-controlled wind lidar data of 97% to 98 %, where the missing part is mainly due to precipitation events exceeding 1 mm/h or fog or low clouds below 100 m. The mean bias in the horizontal wind speed is within 0.1 m/s with a high correlation between the mast and wind lidar measurements, although under some specific conditions (very high wind speed, fog or low clouds) larger deviations are observed. This instrument is being deployed within North Sea wind farms.</p><p>Recently, a scanning long-range wind lidar Windcube 200S (Leosphere/Vaisala) has been installed at Cabauw, as part of the Ruisdael Observatory program [2]. The scanning Doppler wind lidars will provide detailed measurements of the wind field, aerosols and clouds around the Cabauw site, in coordination with other instruments, such as the cloud radar.</p><p>[1] Knoop, S., Bosveld, F. C., de Haij, M. J., and Apituley, A.: A 2-year intercomparison of continuous-wave focusing wind lidar and tall mast wind measurements at Cabauw, Atmos. Meas. Tech., 14, 2219–2235, 2021</p><p>[2] https://ruisdael-observatory.nl/</p>


2012 ◽  
Vol 8 (1) ◽  
pp. 83-86 ◽  
Author(s):  
J. G. Pedersen ◽  
M. Kelly ◽  
S.-E. Gryning ◽  
R. Floors ◽  
E. Batchvarova ◽  
...  

Abstract. Vertical profiles of the horizontal wind speed and of the standard deviation of vertical wind speed from Large Eddy Simulations of a convective atmospheric boundary layer are compared to wind LIDAR measurements up to 1400 m. Fair agreement regarding both types of profiles is observed only when the simulated flow is driven by a both time- and height-dependent geostrophic wind and a time-dependent surface heat flux. This underlines the importance of mesoscale effects when the flow above the atmospheric surface layer is simulated with a computational fluid dynamics model.


2021 ◽  
Author(s):  
Francisco Albuquerque Neto ◽  
Vinicius Almeida ◽  
Julia Carelli

<p>In recent years, the use of radar wind profilers (RWP) at airports has grown significantly with the aim of supporting decision makers to maintain the safety of aircraft landings and takeoffs.</p><p>The RWP provide vertical profiles of averaged horizontal wind speed and direction and vertical wind velocity for the entire Atmospheric Boundary Layer (ABL) and beyond. In addition, RWP with Radio-Acoustic Sounding System (RASS) are able to retrieve virtual temperature profiles in the ABL.</p><p>RWP data evaluation is usually based on the so-called Doppler Beam Swinging method (DBS) which assumes homogeneity and stationarity of the wind field. Often, transient eddies violate this homogeneity and stationarity requirement. Hence, incorrect wind profiles can relate to transient eddies and present a problem for the forecast of high-impact weather phenomena in airports. This work intends to provide a method for removing outliers in such profiles based on historical data and other variables related to the Atmospheric Boundary Layer stability profile in the study region.</p><p>For this study, a dataset of almost one year retrieved from a RWP LAP3000 with RASS Extension is used for a wind profile correction algorithm development.</p><p>The algorithm consists of the detection of outliers in the wind profiles based on the thermodynamic structure of the ABL and the generation of the corrected profiles.</p><p>Results show that the algorithm is capable of identifying and correcting unrealistic variations in speed caused by transient eddies. The method can be applied as a complement to the RWP data processing for better data reliability.</p><p> </p><p>Keywords: atmospheric boundary layer; stability profile; wind profile</p>


Sign in / Sign up

Export Citation Format

Share Document