scholarly journals Movie Success Rate Prediction Using Robust Classifier

Film industry is a multi-billion-dollar industry where each movie earns over billions of dollar. Predicting the success of the movie is a difficult task because the success rate is influenced by various factors like running time, actor, actress, genre etc. In this paper a detailed study of machine learning algorithms such as Adaboost, SVM, and K-Nearest Neighbours (KNN) were done and was implemented on IMDB dataset for predicting box office. Based on the results, Adaboost classifier gives better performance compared to SVM and KNN classifier algorithms

2020 ◽  
Vol 39 (5) ◽  
pp. 6579-6590
Author(s):  
Sandy Çağlıyor ◽  
Başar Öztayşi ◽  
Selime Sezgin

The motion picture industry is one of the largest industries worldwide and has significant importance in the global economy. Considering the high stakes and high risks in the industry, forecast models and decision support systems are gaining importance. Several attempts have been made to estimate the theatrical performance of a movie before or at the early stages of its release. Nevertheless, these models are mostly used for predicting domestic performances and the industry still struggles to predict box office performances in overseas markets. In this study, the aim is to design a forecast model using different machine learning algorithms to estimate the theatrical success of US movies in Turkey. From various sources, a dataset of 1559 movies is constructed. Firstly, independent variables are grouped as pre-release, distributor type, and international distribution based on their characteristic. The number of attendances is discretized into three classes. Four popular machine learning algorithms, artificial neural networks, decision tree regression and gradient boosting tree and random forest are employed, and the impact of each group is observed by compared by the performance models. Then the number of target classes is increased into five and eight and results are compared with the previously developed models in the literature.


Author(s):  
Cheng-Chien Lai ◽  
Wei-Hsin Huang ◽  
Betty Chia-Chen Chang ◽  
Lee-Ching Hwang

Predictors for success in smoking cessation have been studied, but a prediction model capable of providing a success rate for each patient attempting to quit smoking is still lacking. The aim of this study is to develop prediction models using machine learning algorithms to predict the outcome of smoking cessation. Data was acquired from patients underwent smoking cessation program at one medical center in Northern Taiwan. A total of 4875 enrollments fulfilled our inclusion criteria. Models with artificial neural network (ANN), support vector machine (SVM), random forest (RF), logistic regression (LoR), k-nearest neighbor (KNN), classification and regression tree (CART), and naïve Bayes (NB) were trained to predict the final smoking status of the patients in a six-month period. Sensitivity, specificity, accuracy, and area under receiver operating characteristic (ROC) curve (AUC or ROC value) were used to determine the performance of the models. We adopted the ANN model which reached a slightly better performance, with a sensitivity of 0.704, a specificity of 0.567, an accuracy of 0.640, and an ROC value of 0.660 (95% confidence interval (CI): 0.617–0.702) for prediction in smoking cessation outcome. A predictive model for smoking cessation was constructed. The model could aid in providing the predicted success rate for all smokers. It also had the potential to achieve personalized and precision medicine for treatment of smoking cessation.


Author(s):  
Rachaell Nihalaani

Abstract: As Plato once rightfully said, ‘Music gives a soul to the universe, wings to the mind, flight to the imagination and life to everything.’ Music has always been an important art form, and more so in today’s science-driven world. Music genre classification paves the way for other applications such as music recommender models. Several approaches could be used to classify music genres. In this literature, we aimed to build a machine learning model to classify the genre of an input audio file using 8 machine learning algorithms and determine which algorithm is the best suitable for genre classification. We have obtained an accuracy of 91% using the XGBoost algorithm. Keywords: Machine Learning, Music Genre Classification, Decision Trees, K Nearest Neighbours, Logistic regression, Naïve Bayes, Neural Networks, Random Forest, Support Vector Machine, XGBoost


Water ◽  
2021 ◽  
Vol 13 (15) ◽  
pp. 2104
Author(s):  
Carmine Massarelli ◽  
Claudia Campanale ◽  
Vito Felice Uricchio

Microplastics have recently been discovered as remarkable contaminants of all environmental matrices. Their quantification and characterisation require lengthy and laborious analytical procedures that make this aspect of microplastics research a critical issue. In light of this, in this work, we developed a Computer Vision and Machine-Learning-based system able to count and classify microplastics quickly and automatically in four morphology and size categories, avoiding manual steps. Firstly, an early machine learning algorithm was created to count and classify microplastics. Secondly, a supervised (k-nearest neighbours) and an unsupervised classification were developed to determine microplastic quantities and properties and discover hidden information. The machine learning algorithm showed promising results regarding the counting process and classification in sizes; it needs further improvements in visual class classification. Similarly, the supervised classification demonstrated satisfactory results with accuracy always greater than 0.9. On the other hand, the unsupervised classification discovered the probable underestimation of some microplastic shape categories due to the sampling methodology used, resulting in a useful tool for bringing out non-detectable information by traditional research approaches adopted in microplastic studies. In conclusion, the proposed application offers a reliable automated approach for microplastic quantification based on counts of particles captured in a picture, size distribution, and morphology, with considerable prospects in method standardisation.


2021 ◽  
Vol 13 (2) ◽  
pp. 1199-1208
Author(s):  
N. Ajaypradeep ◽  
Dr.R. Sasikala

Autism is a developmental disorder which affects cognition, social and behavioural functionalities of a person. When a person is affected by autism spectrum disorder, he/she will exhibit peculiar behaviours and those symptoms initiate from that patient’s childhood. Early diagnosis of autism is an important and challenging task. Behavioural analysis a well known therapeutic practice can be adopted for earlier diagnosis of autism. Machine learning is a computational methodology, which can be applied to a wide range of applications in-order to obtain efficient outputs. At present machine learning is especially applied in medical applications such as disease prediction. In our study we evaluated various machine learning algorithms [(Naive bayes (NB), Support Vector Machines (SVM) and k-Nearest Neighbours (KNN)] with “k-fold” based cross validation for 3 datasets retrieved from the UCI repository. Additionally we validated the effective accuracy of the estimated results using a clustered cross validation strategy. The process of employing the clustered cross validation scrutinises the parameters which contributes more importance in the dataset. The strategy induces hyper parameter tuning which yields trusted results as it involves double validation. On application of the clustered cross validation for a SVM based model, we obtained an accuracy of 99.6% accuracy for autism child dataset.


2021 ◽  
Author(s):  
Vijaya Kamble ◽  
Rohin Daruwala

In recent years due to advancements in digital imaging machine learning techniques are used in medical image analysis for the prognosis and diagnosis of various abnormalities in the human body. Various Machine learning algorithms, convolution and deep neural networks are used for classification, detection and prediction of various brain tumors. The proposed approach is a different comparative classification analysis approach which is based on three different classification namely KNN classifier,Logistic regression & neural network as classifier. It is based on a deep learning feature extraction technique using VGG19. This VGG 19-layer image recognition model trained on Imgenet. Generally, MRI data sequences are analyzed in terms of different modalities and every modality contains rich tissue information. So, feature exaction from MRI sequences is very important task for brain tumor classification. Our approach demonstrated fair classification on BRATS Benchmarks 2018 data set with different modalities and sizes of images,results are without any human annotations. Based on selected classifiers all the classifiers gives accuracy above 90%. It is good compared to other state of art methods.


Author(s):  
Chandan R ◽  
Chetan Vasan ◽  
Chethan MS ◽  
Devikarani H S

The Thyroid gland is a vascular gland and one of the most important organs of a human body. This gland secretes two hormones which help in controlling the metabolism of the body. The two types of Thyroid disorders are Hyperthyroidism and Hypothyroidism. When this disorder occurs in the body, they release certain type of hormones into the body which imbalances the body’s metabolism. Thyroid related Blood test is used to detect this disease but it is often blurred and noise will be present. Data cleansing methods were used to make the data primitive enough for the analytics to show the risk of patients getting this disease. Machine Learning plays a very deciding role in the disease prediction. Machine Learning algorithms, SVM - support vector machine, decision tree, logistic regression, KNN - K-nearest neighbours, ANNArtificial Neural Network are used to predict the patient’s risk of getting thyroid disease. Web app is created to get data from users to predict the type of disease.


2019 ◽  
Vol 8 (2) ◽  
pp. 3272-3275

India’s population is enormous and diverse due to which its education system is very complex. Furthermore, due to several reasons that they have grown up in different environmental situations. Over the years, several changes have been suggested and implemented by various stakeholders to improve the quality of education in schools. This paper presents a novel method to predict the performance of a new student by the analysis of historical student data records, and furthermore, we explore the NAS dataset using cutting edge Machine Learning Algorithms to predict the grades of a new student and take proactive measures to help them succeed. Similarly, NAS Dataset can also be worthwhile to the employee dataset and can predict the performance of the employee. Some of the Supervised Machine Learning Algorithms for Classification which have been successfully applied to the NAS dataset. Support Vector Machines and K-Nearest Neighbours algorithms did not crop results in coherent time for the given dataset; Gradient Boosting Classifier outperformed than all other algorithms reliably


Sign in / Sign up

Export Citation Format

Share Document