scholarly journals Effective Traffic Management System for Vehicular Network

Vehicular ad hoc networks are becoming the promising research topic in Intelligent transportation system. VANET enable the collaboration amongst multiple vehicle communication which supports by their arrangement and infrastructure for consistent data delivery services. Due to high mobility of vehicles, the data cannot be delivered between vehicles with change in their topologies and its becoming an emerging high area in the field of research. However, the ideal characteristics of vanet routing protocols make proper connectivity for reliable and effective data delivery in traffic scenarios. This article starts with traffic congestion and dissemination of the information to nearby vehicles for making smart city into a very smarter one. As a result of miscommunication between the vehicles , severe accidents happened scores of times especially in the traffic prevailing areas. In order to mitigate terrible accidents, We then focus on (traffic light aware routing protocol) TLRC with (Soft Reservation Multiple Access with Priority Assignment) SRMA/PA routing protocols at intersections and traffic light signals under traffic congestion. In Sum, this article enriches the performance of data delivery ratio and end to end delay in exchanging data between Vanet equipped vehicles.

Author(s):  
Smys S ◽  
Jennifer S. Raj

Routing and mobile data traffic management is a major performance affecting issue in vehicular Ad Hoc networks (VANET). High-rise structures and such radio obstacles cause trouble in proper reception of signals when position-based routing schemes are used. Other major challenges include constrained mobility and irregular distribution of vehicular nodes. A stochastic mobile data traffic model is presented in this paper. This model offers security, reliability, safety and comfort for driving by overcoming the problems of traffic congestion, interference and jamming. It also addresses the handover (HO) issue that occurs during fast mobility. Along with this, the quality parameters of the system such as throughput, packet delivery ratio and delay are also evaluated.


2021 ◽  
Vol 13 (15) ◽  
pp. 8324
Author(s):  
Viacheslav Morozov ◽  
Sergei Iarkov

Present experience shows that it is impossible to solve the problem of traffic congestion without intelligent transport systems. Traffic management in many cities uses the data of detectors installed at controlled intersections. Further, to assess the traffic situation, the data on the traffic flow rate and its concentration are compared. Latest scientific studies propose a transition from spatial to temporal concentration. Therefore, the purpose of this work is to establish the regularities of the influence of traffic flow concentration in time on traffic flow rate at controlled city intersections. The methodological basis of this study was a systemic approach. Theoretical and experimental studies were based on the existing provisions of system analysis, traffic flow theory, experiment planning, impulses, probabilities, and mathematical statistics. Experimental data were obtained and processed using modern equipment and software: Traficam video detectors, SPECTR traffic light controller, Traficam Data Tool, SPECTR 2.0, AutoCad 2017, and STATISTICA 10. In the course of this study, the authors analyzed the dynamics of changes in the level of motorization, the structure of the motor vehicle fleet, and the dynamics of changes in the number of controlled intersections. As a result of theoretical studies, a hypothesis was put forward that the investigated process is described by a two-factor quadratic multiplicative model. Experimental studies determined the parameters of the developed model depending on the directions of traffic flow, and confirmed its adequacy according to Fisher’s criterion with a probability of at least 0.9. The results obtained can be used to control traffic flows at controlled city intersections.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3658
Author(s):  
Qingfeng Zhu ◽  
Sai Ji ◽  
Jian Shen ◽  
Yongjun Ren

With the advanced development of the intelligent transportation system, vehicular ad hoc networks have been observed as an excellent technology for the development of intelligent traffic management in smart cities. Recently, researchers and industries have paid great attention to the smart road-tolling system. However, it is still a challenging task to ensure geographical location privacy of vehicles and prevent improper behavior of drivers at the same time. In this paper, a reliable road-tolling system with trustworthiness evaluation is proposed, which guarantees that vehicle location privacy is secure and prevents malicious vehicles from tolling violations at the same time. Vehicle route privacy information is encrypted and uploaded to nearby roadside units, which then forward it to the traffic control center for tolling. The traffic control center can compare data collected by roadside units and video surveillance cameras to analyze whether malicious vehicles have behaved incorrectly. Moreover, a trustworthiness evaluation is applied to comprehensively evaluate the multiple attributes of the vehicle to prevent improper behavior. Finally, security analysis and experimental simulation results show that the proposed scheme has better robustness compared with existing approaches.


2019 ◽  
Vol 01 (03) ◽  
pp. 139-147
Author(s):  
Wang Haoxiang ◽  
Smys S

The developments in the means of transportation along with the communication advancements has made the automotives to step into its next level of innovation by providing a safe, convenient and well-timed transportation. This is made possible by the introduction of the frame work that is particularly designed to establish connectivity between vehicles on road without any previous structure to support with. This paradigm formed particularly in organizing communication between vehicles is the vehicular Adhoc network (VANET) that causes a vehicles to vehicle connection for proper managing of the traffic flow to make the travel more safe and comfortable. The paper proposes a dynamic mapping of real time traffic with the acquisition of digital map by crowd mapping with clustering to offer path optimization to minimize the delay in the responses, for having an efficient traffic managing. The evaluation of the proposed methodology ensures the minimization of the delay in the communication and the improved delivery ratio incurred, when compared with the carry-forward based routings methods that cause more delay resulting in imperfect traffic management.


2020 ◽  
Vol 8 (6) ◽  
pp. 3228-3231

Intelligent Transport System (ITS) is blooming worldwide. The Traditional Traffic management system is a tedious process and it requires huge man power, to overcome this we have proposed an automatic Traffic monitoring system that has effective fleet management. The current transportation system at intersections and junctions has Traffic Lights with Fixed durations which increase the unnecessary staying time which intern harms the environment. An Adaptive traffic light control is implemented using SUMO simulator, that changes the duration of Green and Red light according to the traffic flow. This is an effective and efficient way to reduce the Traffic congestion. The traffic congestion is determined by taking the object count using deep learning approach (Convolutional Neural Network).


Author(s):  
Norlezah Hashim ◽  
Fakrulradzi Idris ◽  
Ahmad Fauzan Kadmin ◽  
Siti Suhaila Jaapar Sidek

Traffic lights play such important role in traffic management to control the traffic on the road. Situation at traffic light area is getting worse especially in the event of emergency cases. During traffic congestion, it is difficult for emergency vehicle to cross the road which involves many junctions. This situation leads to unsafe conditions which may cause accident. An Automatic Traffic Light Controller for Emergency Vehicle is designed and developed to help emergency vehicle crossing the road at traffic light junction during emergency situation. This project used Peripheral Interface Controller (PIC) to program a priority-based traffic light controller for emergency vehicle. During emergency cases, emergency vehicle like ambulance can trigger the traffic light signal to change from red to green in order to make clearance for its path automatically. Using Radio Frequency (RF) the traffic light operation will turn back to normal when the ambulance finishes crossing the road. Result showed the design is capable to response within the range of 55 meters. This project was successfully designed, implemented and tested.


2014 ◽  
Vol 644-650 ◽  
pp. 2969-2972
Author(s):  
Yue Wei Wang ◽  
Ding Yi Ji

Given a scenario of Vehicle Ad hoc Network (VANET), this paper presented a GIS-Based routing (GBR) strategy to resolve frequent reconstruction caused by rapid topology changes. Due to the use of road information based on GIS, the protocol can evade permanent or temporary topology holes respectively which frequently occurred in the city scenario. Simulation results showed new routing protocols could achieve better performance in packet delivery ratio and proved GBR’s lower routing overhead, as well as it is better performances in high mobility, compared with DSR in urban vehicle environment.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Guangjie Han ◽  
Na Bao ◽  
Li Liu ◽  
Daqiang Zhang ◽  
Lei Shu

Underwater Acoustic Sensor Networks (UASNs) have drawn great attention for their potential value in ocean monitoring and offshore exploration. In order to make the underwater application possible, the unique characteristics of underwater acoustic channels and continuous node movement inspired the emergence of routing protocols for underwater environment. In this paper, we introduce and compare four prominent routing protocols proposed for UASNs, namely, H2-DAB, GEDAR, E-PULRP, and PER. Performances of the routing protocols are evaluated in terms of the average number of control packets, end-to-end delay, data delivery ratio, and total energy consumption. The impact of water currents on the routing algorithms is also analyzed in our simulation. Experimental results demonstrate that E-PULRP provides high data delivery ratio at the cost of end-to-end delay. H2-DAB has better real-time performance for minimal delay transmission. GEDAR efficiently addresses the problem of void region without introducing extra energy. PER requires the most control packets in the process of routing establishment. Our work aims to provide useful insights to select appropriate routing protocols to fulfil different application requirements in UASNs.


2020 ◽  
Vol 5 (1) ◽  
pp. 56-63
Author(s):  
Chi-Fu Huang ◽  
Jyun-Hao Jhang

Due to advances in wireless communication technologies, wireless transmissions gradually replace traditional wired data transmissions. In recent years, vehicles on the move can also enjoy the convenience of wireless communication technologies by assisting each other in message exchange and form an interconnecting network, namely Vehicular Ad Hoc Networks (VANETs). In a VANET, each vehicle is capable of communicating with nearby vehicles and accessing information provided by the network. There are two basic communication models in VANETs, V2V and V2I. Vehicles equipped with wireless transceiver can communicate with other vehicles (V2V) or roadside units (RSUs) (V2I). RSUs acting as gateways are entry points to the Internet for vehicles. Naturally, vehicles tend to choose nearby RSUs as serving gateways. However, due to uneven density distribution and high mobility nature of vehicles, load imbalance of RSUs can happen. In this paper, we study the RSU load-balancing problem and propose two solutions. In the first solution, the whole network is divided into sub-regions based on RSUs’ locations. A RSU provides Internet access for vehicles in its sub-region and the boundaries between sub-regions change dynamically to adopt to load migration. In the second solution, vehicles choose their serving RSUs distributedly by taking their future trajectories and RSUs’ loading information into considerations. From simulation results, the proposed methods can improve packet delivery ratio, packet delay, and load balance among RSUs.


Sign in / Sign up

Export Citation Format

Share Document