scholarly journals Bond Behaviour of Steel and Concrete with Pull-Out Test

This experimental investigation presents the influence of rebar’s which has protecting coating, rested rebar and fresh rebar and there bond strength development between the steel and concrete. Pull-out experiment was conducted Universal Testing Machine (UTM) which has a capacity of 400 KN as per IS code procedure. The tested rebar includes rusty rebar, acid preserved rebar and cement chemical compound anticorrosive coated rebar. The Concrete mix design for M25 grade of concrete were used and therefore 18 concrete cube specimens with external projection of steel rod were tested. The various load slip behaviour was studied at the free end finish and loaded end victimization dial gauges. The last word bond stress just like the lowest load worth of 0.025 mm metal slip and 0.25 mm slip was thought of as a result of the usable bond strength of steel rebar’s and concrete. The check results blatant correlation exists between Load at 0.025 mm free finish slip and 0.25 mm loaded finish slip. It had been found that presence of rust and cement compound anticorrosive coating among the steel concrete interface appreciably can increase the bond strength of the order of 20 % and 27 % severally for 16mm diameter bars as compared to rust free rebar. For 20mm dia. Bars has totally different bond strength for rusty rebar’s and therefore the increase in bond strength for coated bars are compared with 2 differing kinds of uncoated bars and rusted rebar’s were determined. It’s over that presence of rust influences in reduction / increase in bond strength hoping on the character of rust at the interface among the initial ages. Application of cement compound coating has been improves the bond strength of the order of 31% – 37 % to satisfies the necessities of Burse Indian Standards code (IS)

2020 ◽  
Vol 6 (1) ◽  
pp. 193
Author(s):  
Sarvat Gull ◽  
Shoib B. Wani ◽  
Ishfaq Amin

 The bond strength between rebar and concrete is important for the quality performance of reinforced concrete structures. At the interface, bond strength development mainly depends on surface configuration. Different rib configuration improves the strength significantly in high yield rebars as compared to mild steel. This study examines the bond strength behavior of ordinary MS (Mild Steel) rebars, HYSD (High Yield Strength Deformed) parallel rib, and HYSD diamond rib rebars. Experimental analysis to obtain pull-out behavior of rebar in concrete was based on IS 2770 Part I – 1967: Reaffirmed 2007; Indian Standard Methods of Testing Bond in Reinforced Concrete.  Importantly, the concrete of M30 grade was used and a total of nine specimens were tested. The cubes of size 150mm x 150mm x 150mm were cast with centrally embedded rebar provided up to 20 mm from their bottom faces. Additionally, the pull-out test was conducted in 1000 kN capacity Universal Testing Machine. The usable bond strength values were calculated from the load at 0.025 mm free and 0.25 mm loaded end slips. The results showed that the usable bond strength value of HYSD diamond rib rebars is very large compared to MS and appreciably greater than HYSD parallel rib. Moreover, the usable bond strength of HYSD diamond rib rebars is 60.06% and 35.60 % greater than that of the MS rebars and HYSD parallel rib pattern rebars, respectively. The high frictional resistance developed in the bond strength test of HYSD diamond rib rebars because of the better mechanical interlocking. This was primarily due to the presence of a more frictional surface area of lugs. 


Author(s):  
Katarzyna Zdanowicz ◽  
Boso Schmidt ◽  
Hubert Naraniecki ◽  
Steffen Marx

<p>The bond behaviour of concrete specimens with carbon textile reinforcement was investigated in the presented research programme. Pull-out specimens were cast from self-compacting concrete with expansive admixtures and in this way chemical prestress was introduced. The aim of the research was to compare bond behaviour between prestressed specimens and non-prestressed control specimens. During pull-out tests, the pull-out force and notch opening were measured with a load cell and laser sensors. Further, bond - slip and pull-out force - crack width relationships were drawn and compared for prestressed and non-prestressed specimens. Chemically prestressed specimens reached 24% higher bond strength than non-prestressed ones. It can be therefore concluded, that chemical prestressing positively influences the bond behaviour of concrete with textile reinforcement and thus better utilisation of its properties can be provided.</p>


2009 ◽  
Vol 03 (03) ◽  
pp. 173-177 ◽  
Author(s):  
Ahmet Yalcin Gungor ◽  
Hakan Turkkahraman ◽  
Necdet Adanir ◽  
Huseyin Alkis

ABSTRACTObjectives: To evaluate the effects fluorosis and self etching primers (SEP) on shear bond strengths (SBS) of orthodontic brackets.Methods: A total of 48 (24 fluorosed and 24 non-fluorosed) non-carious freshly extracted human permanent premolar teeth were used in this study. Fluorosed teeth were selected according to the modified Thylstrup and Fejerskov index (TFI), which is based on the clinical changes in fluorosed teeth. Fluorosed and non-fluorosed teeth were randomly assigned to 4 groups of 12 each. In groups I (non-fluorosed teeth) and II (fluorosed teeth), standard etching protocol was used and brackets were bonded with Light Bond. In groups III (non-fluorosed teeth) and IV (fluorosed teeth), Transbond Plus SEP was used and brackets were bonded with Transbond XT Light Cure Adhesive. All specimens were cured with a halogen light. After bonding, SBS of the brackets were tested with Universal testing machine. After debonding, all teeth and brackets in the test groups were examined under 10x magnifications. Any adhesive remained after debonding was assessed and scored according to the modified Adhesive Remnant Index (ARI).Results: ANOVA indicated a significant difference between groups (P<.001). SBS in group II (Light Bond+Fluorosis) were significantly lower than other groups. ARI scores of the groups were also significantly different (P<.001). There was a greater frequency of ARI scores of 1,2 and 3 in group II (Light Bond+Fluorosis).Conclusions: When standard etching protocol was used enamel fluorosis significantly decreased the bond strength of orthodontic brackets. Satisfactory bond strengths were obtained when SEP was used for bonding brackets to the fluorosed teeth. (Eur J Dent 2009;3:173-177)


2015 ◽  
Vol 5 (1) ◽  
pp. 22-26
Author(s):  
Muzin Shahi Shaik ◽  
Snigdha Pattanaik ◽  
Sudhakar Pathuri ◽  
Arunachalam Sivakumar

Introduction: Bond strength is an important property and determines the amount of force delivered and treatment duration in orthodontics. Many light-cured bonding materials are being used; but it is required to determine the most efficient one withdesired bond strength. Objective: To determine and compare the shear bond strength of three visible light-cured composites (Transbond XT, Heliositand Enlight) and two self-cured composites (Rely-a-bond and Concise). Materials & Method: 100 extracted premolars were collected and randomly divided into 5 test groups of different adhesives. Brackets were bonded to the teeth in each test group with the respective adhesive according to the manufacturer’s instructions. Each specimen was debonded using Universal Testing Machine and the shear bond strength for each specimen was calculated. All the groups were compared by ANOVA one-way test. Results: There were statistically significant differences among the five groups (P<0.05). The shear bond strength of Enlight (13.92 ± 3.92) is similar to Transbond XT (14.30 ± 4.35). Conclusion: Light cure composites showed higher bond strength than self cure composites.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Amjad Abu Hasna ◽  
Stephanie Semmelmann ◽  
Fernanda Alves Feitosa ◽  
Danilo De Souza Andrade ◽  
Franklin R Tay ◽  
...  

This study evaluated the effect of different surface treatments on the tensile bond strength between lithium disilicate glass-ceramics, resin cement, and dentin. Fifty truncated cone-shape glass-ceramics were divided into five groups (n = 10): G1, control: 10% hydrofluoric acid (HF); G2, Nd:YAG laser + silane; G3, Sil + Nd:YAG laser; G4, graphite + Nd:YAG laser + Sil; and G5, graphite + Sil + Nd:YAG laser. Fifty human third-molars were cut to cylindrical shape and polished to standardize the bonding surfaces. The glass-ceramic specimens were bonded to dentin with a dual-cured resin cement and stored in distilled water for 24 h at 37ºC. Tensile testing was performed on a universal testing machine (10 Kgf load cell at 1 mm/min) until failure. The bond strength values (mean ± SD) in MPa were G1 (9.4 ± 2.3), G2 (9.7 ± 2.0), G3 (6.7 ± 1.9), G4 (4.6 ± 1.1), and G5 (1.2 ± 0.3). Nd:YAG laser and HF improve the bond strength between lithium disilicate glass-ceramics, resin cement, and dentin. The application of a graphite layer prior to Nd:YAG laser irradiation negatively affects this bonding and presented inferior results.


2014 ◽  
Vol 62 (4) ◽  
pp. 365-370 ◽  
Author(s):  
Ricardo Alves dos SANTOS ◽  
Eliane Alves de LIMA ◽  
Mônica Maria de Albuquerque PONTES ◽  
Alexandre Batista Lopes do NASCIMENTO ◽  
Marcos Antônio Japiassú Resende MONTES ◽  
...  

OBJECTIVE: To assess the bond strength to dentin of the Single Bond (3M ESPE) and XP Bond (Dentsply) total-etch and Adper SE Plus (3M ESPE) self-etch adhesive systems. METHODS: Fifteen healthy human third molars were randomly allocated across three different groups of five teeth each according to the adhesive system. The occlusal portion of each tooth was removed under refrigeration using a flexible diamond disc (EXTEC, Enfield, CT, USA) down to an area of dentin that did not reveal enamel, as confirmed under a 40X stereo microscope (Ramsor, São Paulo, Brazil). A standardized smear layer was created with #600 grit silicon-carbide paper. The adhesive systems were applied as per manufacturer recommendations, with the exception of the Adper SE Plus system, which was triple-polymerized. Composite resin blocks (5 mm) were placed on the dentin surface. The specimens were stored in distilled water for 24 hours at 37ºC. Using a flexible diamond disc (EXTEC, Enfield, CT, USA), toothpick-like specimens with an adhesive area of less than 1 mm² were obtained. A microtensile bond test was then carried out using a universal testing machine (KRATOS) with a crosshead speed of 0.5 mm/min. Analysis of variance (ANOVA) and Tukey's test were used for comparisons. RESULTS: The bond strength values obtained with each adhesive system were as follows: XP Bond, 96.24 MPa; Adper Single Bond, 72.39 MPa; Adper SE Plus, 49.91 MPa. CONCLUSION: In terms of bond strength to dentin, conventional adhesives outperform self-etching systems.


2007 ◽  
Vol 18 (2) ◽  
pp. 107-112 ◽  
Author(s):  
Eduardo Dall'Magro ◽  
Mário Alexandre Coelho Sinhoreti ◽  
Américo Bortolazzo Correr ◽  
Lourenço Correr-Sobrinho ◽  
Simonides Consani ◽  
...  

This study evaluated the bond strength (push-out method) and Knoop hardness of Z250 composite resin, photoactivated with XL 2500 curing unit, using different protocols: continuous mode (700mW/cm² for 20s) (CO); soft-start (50 mW/cm² for 5 s, followed by 700 mW/cm² for 15 s) (SS1); soft-start (100 mW/cm² for 5 s, followed by 700 mW/cm² for 15 s) (SS2); soft-start (150 mW/cm² for 5 s, followed by 700mW/cm² for 15s) (SS3); soft-start (200mW/cm² for 5s, followed by 700mW/cm² for 15s) (SS4); soft-start (250mW/cm² for 5 s, followed by 700 mW/cm² for 15 s) (SS5); soft-start (300 mW/cm² for 5 s, followed by 700 mW/cm² for 15 s) (SS6). For the push-out test, the specimens were tested in a universal testing machine at a crosshead speed of 0.5 mm/min. For the hardness test, the specimens were polished for the hardness measurements, using a 50 g load for 15 s. Data were submitted to ANOVA and Tukey's test (alpha=5%). The results of bond strength showed that the SS3 group obtained the highest bond strength when compared to the CO group. There were no significant differences among the other modes in relation to the other groups. Regarding the other results in hardness, there were no significant differences among the groups in the surface region and up to 4 mm depth.


2019 ◽  
Vol 292 ◽  
pp. 217-223 ◽  
Author(s):  
Ondřej Janus ◽  
Frantisek Girgle ◽  
Vojtech Kostiha ◽  
Petr Štěpánek ◽  
Pavel Sulak

It is well-known that test configuration affects bond behaviour of steel reinforcement, but this effect has not yet been sufficiently quantified when using FRP reinforcement. This paper presents partial results from an ongoing experimental programme that deals with the bond strength of GFRP bars with concrete, with regards to the effect of the surface treatment of the rebars and test configuration. A modified beam test is presented in this study along with a pull-out test with an eccentric bar placement. The bond strength of GFRP reinforcement with sand-coated treatment using silica sand and ribbed type with milled ribs was tested. The sand-coated bars exhibit different bond behaviour compared to the ribbed ones due to different forces transfer from the reinforcement to the concrete. Thickness of the concrete cover layer also has a significant effect on the bond behaviour of the reinforcement.


2011 ◽  
Vol 492 ◽  
pp. 18-23
Author(s):  
Xin Yi Zhao ◽  
Shi Bao Li ◽  
Xu Gong

To evaluate the effects of specimen grips on the measurement of the micro-tensile bond strength (mTBS) to dentin. Methods: Twelve extracted human molars were sectioned to expose mid-coronal dentin. Each surface was ground with 600-grit SiC paper. Four adhesives: Prime & Bond NT (Dentsply, USA), Contex (DMG, German), Adper Prompt (3M/ESPE, USA) and Clearfil S3Bond (Kuraray, Japan) were applied to the polished surfaces followed by creation of composite buildups. After 24 hr storage in 37°C water, the teeth were sectioned perpendicular to the adhesive interface to produce multiple beams of composite-bonded dentin, approximately 0.8 mm2in cross-sectioned area. Half of the specimens were attached to testing grips A which did not contain positioning pins and another half were attached to the testing grips B which contained positioning pins. All specimens were tested using a universal testing machine at a crosshead speed of 1.0 mm/min. Results: Specimens tested using the grips A presented lower mTBS than using the grips B (P<0.01). Many specimens tested using the grips A showed mix failure or cohesive failure within composite, and most of the failures were adhesive for specimens tested using the grips A. Conclusion: Specimen grips without positioning pins cannot accurately present mTBS and the grips with positioning pins can more accurately present mTBS.


2006 ◽  
Vol 530-531 ◽  
pp. 605-611
Author(s):  
M.C. Bottino ◽  
D.K. Oyafuso ◽  
Paulo Guilherme Coelho ◽  
Elisa B. Taddei ◽  
Vinicius André Rodrigues Henriques ◽  
...  

The shear bond strength between a ceramic material (Titankeramik®, Vita Zahnfabrik, Germany) and two biocompatible titanium alloys was investigated. Ti-13%Nb-13%Zr (TNZ) and Ti-35%Nb-7%Zr-5%Ta (TNZT) alloys were obtained based on the blended elemental technique followed by a sequence of cold uniaxial and isostatic pressing and sintering. Characterization involved microstructural analysis (SEM) and crystalline phase identification (XRD). Subsequently, samples were machined to 4 x 4 mm with a base of 5 x 1 mm. The base metals were blasted with Al2O3 particles followed by the application of a coupling agent and opaque ceramic. After ceramic firing, the specimens were loaded in a universal testing machine (0,5mm/min). XRD revealed the presence of α and β-phases for TNZ, and peaks related to β phases and Nb and Ta for the TNZT alloy. SEM evaluation (TNZ) depicted remaining pores and biphasic microstructure formation. SEM micrographs of the TNZT alloy revealed good densification and a homogeneous β structure. Shear bond strength data (MPa) were statistically analyzed (one-way ANOVA and Tukey test, α=.05) revealing that TNZT (37.6 ± 2.91) presented significant higher values (p=0.0002) compared to TNZ (26.03 ± 2.92). In conclusion, it seems that Ti alloy composition plays a significant role on ceramic bonding.


Sign in / Sign up

Export Citation Format

Share Document