scholarly journals Performance of Tubular Structure under Seismic Excitation

Advancement in the building construction technology and structural analysis the tall structures have been significantly increased due to over growing population and for land mark of country. The tall structures are more prone to lateral load. In this study different forms of tubular structure are used to resist the Earthquake forces. Tubular structures are made based on the idea that building is design to act like a hollow cylinder cantilever perpendicular to the grounds. The aim of this paper is to present the seismic performance of tubular structure with and without central core. The Framed tube system, Tube in tube system, Bundled tube system, Braced tube system and Moment resisting Frame was analyzed to draw the comparison on the basis of base shear, storey drift, time period and storey shear satisfying the structural codes- IS 456-2000, IS 1893(Part 1):2016 in E-TABs software by Response spectrum method.

Lately, Tubular structures have been broadly utilized as structural key for tall structures in the field of structural engineering. Tubular structure of different types, are generally utilized because of their high solidness in opposing lateral loads, increase in the utilization of floor spacing and more economic in construction. The parametric analysis was completed on two 40-storey RCC buildings using the software ETABS. Here in this paper, the performance of Tube in Tube building and a moment resisting frame building will be investigated. The models are studied employing continuum approach in which the continual connecting means i.e. beams connecting vertical members and horizontal slabs are assumed to have equitably dispersed stiffness properties. Equivalent static method and Response spectrum method is applied and the analysis results of moment resisting frame and tube in tube buildings are studied to have a comparative analysis of their seismic performance.


2021 ◽  
Vol 331 ◽  
pp. 05007
Author(s):  
Ridho Aidil Fitrah ◽  
Masrilayanti Masrilayanti ◽  
Gita Zakiah Putri ◽  
Zev Al Jauhari

Setback irregularities are considered where discontinuity between adjacent stories is excessive. This irregularity caused the probability of high damage at structures subjected to strong earthquake motion. For this purpose, this study was conducted by modeling the steel special moment frame (SMF) structures using a finite element calculation program with nonlinear static analysis compared to Padang city’s response spectrum. The buildings are also modeled with two types of setbacks: single and multiple setbacks. The results of this paper are discussed including the explanation of many parameters that relate to elastic and inelastic seismic responses of steel special moment frame (SMF). Based on the results, the setback irregularities, both single and multiple setbacks, the inelastic seismic responses are adequately sufficient to SNI 1726 2019 regarding drift limit. The other seismic responses are also discussed in terms of fundamental periods, inter-story drifts, story stiffness, and base shear. Referred to Indonesian Seismic Provision, SNI 1726 2019, it is found that single setback building has more adequate than multiple setbacks in terms of seismic responses. Then, the seismic assessments between these setbacks are explained to address the recommendations about future prevention toward damages and failures in steel buildings.


Author(s):  
Ali Ruzi Özuygur

Seismic base isolation has been successfully used to protect structural and nonstructural components from the damaging effects of earthquakes by reducing floor accelerations and inter-story drifts for decades. The level of floor acceleration is a key issue in the protection of acceleration-sensitive nonstructural components. In this paper, floor acceleration performance of seismically isolated buildings with different lateral load resisting systems such as moment resisting frame, dual system, moment resisting frame plus viscous wall dampers and dual system plus viscous wall dampers is investigated. Moreover, the effectiveness of supplemental viscous damping devices equipped in parallel with lead-rubber isolators is studied. It is inferred from the study that the most effective way of reducing floor accelerations is to provide more rigidity to the superstructure. Utilizing supplemental viscous dampers along with lead-rubber isolators having about 20% of effective damping ratio is meaningless or harmful in relation to floor acceleration and base shear.


2018 ◽  
Vol 763 ◽  
pp. 967-974 ◽  
Author(s):  
Bai Ping Dong ◽  
Richard Sause ◽  
James M. Ricles

Real-time hybrid earthquake simulations (RTHS) were performed on steel moment-resisting frame (MRF) structures with nonlinear viscous dampers. The test structures for the RTHS contain a moment-resisting frame (MRF), a frame with nonlinear viscous dampers (DBF), and a gravity load system with associated seismic mass and gravity loads. The MRFs have reduced beam section beam-to-column connections and are designed for 100%, 75%, and 60%, respectively, of the base shear strength required by ASCE 7-10. RTHS were performed to evaluate the seismic performance of these MRF structures. Two phases of RTHS were conducted: (Phase-1) the DBF is the experimental substructure in the laboratory; and (Phase-2) the DBF with the MRF is the experimental substructure. Results from the two phases of RTHS are evaluated. The evaluation shows that the RTHS provide a realistic and accurate simulation of the seismic response of the test structures. The evaluation also shows that steel MRF structures designed with reduced strength and with nonlinear viscous dampers can have excellent seismic performance.


Seismic analysis of structure is employed to make the structure enable to resist the seismic forces and perform against the factors causing the failure of the structure under dynamic excitation. Among various response factors, the base shear and time period of buildings are predominant factors used in the analysis and design of the structure. The prime objective of the paper is to present an analytical study on non-linear seismic analysis of moment resisting framed buildings (as per Indian code IS1893 – 2016) to evaluate the base shear of different configurations of buildings according to different mode combination methods. The obtained results have been presented the comparative analysis of different combination methods. The paper also presents the evaluated results in the form of the time period values of the different buildings depending upon variation in its configuration. As a result, the responses of multistoried moment-resisting framed buildings have been evaluated for various models of considered buildings based on different mode combination methods, and the results of obtained responses have been analyzed in a comparative manner to understand the behaviour of buildings under various methods and configuration conditions. The work presented in the paper can support to develop better understanding of structural response and efficient designing of structures.


Author(s):  
Kapil Shankar Soni

Abstract: Infill walls are inevitable components of any structure to create dispassion between interior space and external condition. In general, there are some prevalent openings inside the infill walls because of practical needs, architectural observations or aesthetic inspections. In current design practice, strength and inflexibility contribution of infill walls aren't thought of. However, the presence of infill walls may impact the seismic reaction of structures exposed to earthquake loads and cause a conduct which is not the same as that estimated for a bare frame. Additionally, partial openings inside infill walls are significant parameter prompting the seismic behaviour of infilled frames in this manner retreating lateral stiffness and strength. In this study is proposed to compare various models of buildings considering the openings (10% of surface area) at different locations in the infill walls for the seismic behaviour. A G+13 residential building is considered in Zone III with soil type II and analysis is carried out by Response Spectrum Method. Various parameters are considered such as Natural Time period, Base shear, Storey displacement, Storey drift and Storey stiffness were studied. The comparative study could simplify designers and code developers in selecting and recommending appropriate analytical models for estimating strength, stiffness, failure modes and other properties of infill frames with openings. Keywords: Residential Building, Openings Infill Wall, ETAB Software, Natural Time Period, Base Shear, Storey Shear, Storey Displacement, Storey Drift, Storey Stiffness.


The offshore jacket platforms are primarily installed in the large oceans mainly for drilling the crude oil, carbohydrates and production of electricity. The current studies emphasize on the structural performance of offshore deck jacket platform with different bracing systems. Earthquake analysis has been performed to calculate the seismic responses, with the help of bracings to control the seismic induced vibrations of the jacket platforms. For this study, a jacket platform made up of steel members has been modeled and then analyzed under earthquake and wave loadings. This paper mainly deals to compute and compare the seismic behavior of offshore steel deck platform using SAP 2000 v20 software with bracing in the horizontal plane and bracing in both horizontal and vertical planes. The total number of 8 models has been analyzed in the SAP2000 software with bracing i.e. X, V, Inverted V and K in the vertical plane and bracing i.e. X, V, Inverted V and K in both horizontal and vertical plane. A relative study has been carried out in Time period, deck displacement and base shear. Seismic analysis using linear static, i.e. Equivalent static method (ESA) and linear dynamic, i.e. Response spectrum method (RSA) has been performed. Further deck displacement, time period and base shear are determined by Equivalent static method and Response spectrum method for various types of bracing models in both horizontal and vertical planes. Among the all various types of bracing models, Inverted V bracing in the vertical plane is found to be the optimum model among all other models.


1992 ◽  
Vol 19 (4) ◽  
pp. 688-710 ◽  
Author(s):  
T. J. Zhu ◽  
W. K. Tso ◽  
A. C. Heidebrecht

Seismic areas in Canada are classified into three categories for three different combinations of acceleration and velocity seismic zones (Za < Zv, Za = Zv, and Za > Zv), and ground motions in different zonal combination areas are expected to have different frequency characteristics. The National Building Code of Canada specifies different levels of seismic design base shear for short-period buildings located in areas with different zonal combinations. The specification of seismic design base shear for long-period buildings is directly tied to zonal velocity, irrespective of seismic zonal combination. This paper evaluates the seismic performance of both high-rise long-period and low rise short-period reinforced concrete ductile moment-resisting frame buildings located in seismic regions having Za < Zv, Za = Zv, and Za > Zv. Two frame buildings have 10 and 18 storeys were used as structural models for high-rise buildings, while a set of four-storey buildings were used to represent low-rise buildings. All buildings were designed to the current Canadian seismic provisions and concrete material code. Three groups of earthquake records were selected as representative ground motions in the three zonal combination regions. The inelastic responses of the designed buildings to the three groups of ground motions were analyzed statistically. The results indicate that the distribution of inelastic deformations is significantly different for high-rise frame buildings situated in seismic regions with Za < Zv, Za = Zv, and Za > Zv. Inelastic deformation is concentrated in the lower storeys for high-rise buildings located in Za < Zv areas, whereas significant inelastic deformation can develop in the upper storeys for high-rise buildings situated in Za > Zv regions. The use of three different levels of seismic design base shear for short-period structures improves the consistency of ductility demands on low-rise buildings situated in the three different zonal combination regions. Despite the use of appropriate design base shears for different seismic regions, the ductility demands for these low-rise buildings are relatively high. To avoid excessive ductility demands, it is suggested that the seismic strengths for low-rise short-period buildings should not be significantly reduced from their elastic design base shears. Key words: earthquake, ground motion, seismic, design, reinforced concrete, frame buildings, beams, columns, ductility.


This paper presents a seismic behavior of various structures using different codal provision as given Indian code, American code, &Newzealand code for earthquake analysis. This study is carried out on residential building of G+5, G+11, G+21 of Special RC structure . Modeling of the structure is done as per ETAB software. Time period of the structure in both the direction is taken from the software as per the three standard (9 model are made 3 model for each code). A comparative analysis is performed in terms of base shear, deflection limit, stores drift at linearly static and response spectrum.


Sign in / Sign up

Export Citation Format

Share Document