scholarly journals Design of Routing Protocols in IoT

IoT is an emerging technology nowadays and it has many applications in our day to day life. Through Internet of Things, millions of devices can be connected to the internet which can communicate each other by exchanging the data. For efficient transmission of packets, proper routing and scheduling alga- rhythms are required. Efficient routing and scheduling strategies ensure proper resource allocation in the network. Most of the IoT system uses the effective packet scheduling and routing concepts to enhance the performance of the network. This paper describes the concepts of various routing and scheduling protocols used in Internet of Things. Working of different protocols and its merits ands merry serial sodas sled in this art icle.

2019 ◽  
Vol 8 (2S11) ◽  
pp. 3539-3543

In this present state-of-the-art, Internet of Things (IOT) is an emerging technology that is making our world smarter. WiFi enabled greenhouse monitoring is an intelligent system which is based on several sensors that monitor various changes in temperature, gas concentrations, light and soil moisture in the greenhouse. This comes with an added advantage or provision of linking all these sensors to your mobile phones or computers/laptops using Wi-Fi and internet services through the concept of Internet of Things (IoT), so that if there are any fluctuations, you will be notified immediately. This provides convenient control, through manual operations if necessary, of the greenhouse anytime and anywhere as long as the device is connected to the internet. In this an artificial environment is created so that the crops yield more crops per square meter compared to open field cultivation since the micro climatic parameters that determine crop yield are continuously examined and controlled to ensure that an optimum environment is created.


2020 ◽  
Author(s):  
Tanweer Alam

<p>The fog computing is the emerging technology to compute, store, control and connecting smart devices with each other using cloud computing. The Internet of Things (IoT) is an architecture of uniquely identified interrelated physical things, these physical things are able to communicate with each other and can transmit and receive information. <a>This research presents a framework of the combination of the Internet of Things (IoT) and Fog computing. The blockchain is also the emerging technology that provides a hyper, distributed, public, authentic ledger to record the transactions. Blockchains technology is a secured technology that can be a boon for the next generation computing. The combination of fog, blockchains, and IoT creates a new opportunity in this area. In this research, the author presents a middleware framework based on the blockchain, fog, and IoT. The framework is implemented and tested. The results are found positive. </a></p>


Author(s):  
Aminu Bello Usman ◽  
Jairo A. Gutierrez ◽  
Abdullahi Baffa Bichi

The internet of things (IoT) is expected to influence both architecture and infrastructure of current and future smart cities vision. Thus, the requirement and effectiveness of making cities smarter demands suitable provision of secure and efficient communication networks between IoT networking devices. Trust-based routing protocols play an important role in IoT for secure information exchange and communications between IoT networking elements. Thus, this chapter presents the foundation of trust-based protocols from social science to IoT for secure smart city environments. The chapter outlines and discusses the key ideas, notions, and theories that may help the reader to understand the current status and the possible future trends of trust-based protocols in IoT networks for smart cities. The chapter also discusses the implications, requirements, and future research challenges of trust-based protocols in IoT for smart cities.


Author(s):  
Olof Magnusson ◽  
Rikard Teodorsson ◽  
Joakim Wennerberg ◽  
Stig Arne Knoph

LoRaWAN (long-range wide-area network) is an emerging technology for the connection of internet of things (IoT) devices to the internet and can as such be an important part of decision support systems. In this technology, IoT devices are connected to the internet through gateways by using long-range radio signals. However, because LoRaWAN is an open network, anyone has the ability to connect an end device or set up a gateway. Thus, it is important that gateways are designed in such a way that their ability to be used maliciously is limited. This chapter covers relevant attacks against gateways and potential countermeasures against them. A number of different attacks were found in literature, including radio jamming, eavesdropping, replay attacks, and attacks against the implementation of what is called beacons in LoRaWAN. Countermeasures against these attacks are discussed, and a suggestion to improve the security of LoRaWAN is also included.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 57192-57203 ◽  
Author(s):  
Yanhua He ◽  
Sunxuan Zhang ◽  
Liangrui Tang ◽  
Yun Ren

2020 ◽  
pp. 6-10
Author(s):  
Arulanantham D ◽  
Pradeepkumar G ◽  
Palanisamy C ◽  
Dineshkumar Ponnusamy

The Internet of Things (IoT) is an establishment with sensors, base station, gateway, and network servers. IoT is an efficient and intellectual system that minimizes human exertion as well as right to use to real devices. This method also has an autonomous control property by which any device can control without any human collaboration. IoT-based automation has become very reasonable and it has been applied in several sectors such as manufacturing, transport, health care, consumer electronics, etc. In WSN’s smaller energy consumption sensors are expected to run independently for long phases. So much ongoing researches on implementing routing protocols for IoTbased WSNs.Energy consciousness is an essential part of IoT based WSN design issue. Minimalizing Energy consumption is well-thought-out as one of the key principles in the Expansion of routing protocols for the Internet of things. In this paper, we propose a Location based Energy efficient path routing for Internet of things and its applications its sensor position and clustering based finding the shortest path and real time implementation of Arduino based wireless sensor network architecture with the ESP8266 module. Finally, analyze the principles of Location-based energy-efficient routing and performance of QoS parameters, and then implemented automatic gas leakage detection and managing system.


2020 ◽  
Vol 17 (9) ◽  
pp. 4207-4212
Author(s):  
Padala Neeraja ◽  
Durgesh Nandan

The internet of things is nothing but the interconnection of a number of systems or objects in which the internal circuit consists of a number of sensors and connectors. The main aim of the internet of things is to transfer information and to make an interaction between the systems. Through IoT, all the systems can be sensed and all the home appliances will be controlled remotely through a mobile device. It creates an integration of more and more networks in the future. The IoT is a very important emerging technology nowadays in which the main applications of IoT are smart grids, smart homes, etc. As the number of devices was increasing nowadays IoT plays a very significant role in present society. So, the challenges were increasing and there will be a machine to machine communication and also with the user. It reduces human efforts as it is machine-dependent. It acts according to the instructions given by the user.


2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Jiangdong Lu ◽  
Dongfang Li ◽  
Penglong Wang ◽  
Fen Zheng ◽  
Meng Wang

Today, with increasing information technology such as the Internet of Things (IoT) in human life, interconnection and routing protocols need to find optimal solution for safe data transformation with various smart devices. Therefore, it is necessary to provide an enhanced solution to address routing issues with respect to new interconnection methodologies such as the 6LoWPAN protocol. The artificial neural network (ANN) is based on the structure of intelligent systems as a branch of machine interference, has shown magnificent results in previous studies to optimize security-aware routing protocols. In addition, IoT devices generate large amounts of data with variety and accuracy. Therefore, higher performance and better data handling can be achieved when this technology incorporates data for sending and receiving nodes in the environment. Therefore, this study presents a security-aware routing mechanism for IoT technologies. In addition, a comparative analysis of the relationship between previous approaches discusses with quality of service (QoS) factors such as throughput and accuracy for improving routing mechanism. Experimental results show that the use of time-division multiple access (TDMA) method to schedule the sending and receiving of data and the use of the 6LoWPAN protocol when routing the sending and receiving of data can carry out attacks with high accuracy.


Sign in / Sign up

Export Citation Format

Share Document