scholarly journals Conclusive Research Design and Development of the Effect of Linear Deformation on Some Debye Properties of Metals

This Work, Debye Temperature And Debye Frequency Of Metals Were Computed And Studied Using Quantum Einstein Theory. The Electron Density Parameters Of Strained Metals Is Obtained And Used In The Computation.. The Results Obtained Revealed That There Is Agreement Between The Computed And Experimental Values Of Debye Temperature And Debye Frequency. This Shows That The Model Can Be Used To Study Debye Properties Of Metals. The Debye Temperature And Debye Frequency Obtained Are More Concentrated In The High Density Limit. This Revealed That Debye Temperature And Debye Frequency Of Metals Depend On The Electronic Concentration. Also, The Experimental Value Of Debye Temperature And Debye Frequency Is Higher Than The Computed Value, This Is Because Of Some Factor Which Debye Temperature And Debye Frequency Relied On That The Theory Failed To Account For. Debye Temperature And Debye Frequency Of Metals Reduces As Strain Increase. This Shows That As Strain Increase, Space Between Lattice Atom Increase Which Reduces Strength Of Electron Interaction And There-By Forces Debye Temperature, Debye Frequency To Decrease As Deformation Increase. This Behavior Of Metals Reveal That Debye Temperature And Debye Frequency Is Greatly Affected By Deformation.

2016 ◽  
Vol 30 (35) ◽  
pp. 1650414 ◽  
Author(s):  
Mingliang Wang ◽  
Zhe Chen ◽  
Dong Chen ◽  
Cunjuan Xia ◽  
Yi Wu

The structural, elastic and thermodynamic properties of the A15 structure V3Ir, V3Pt and V3Au were studied using first-principles calculations based on the density functional theory (DFT) within generalized gradient approximation (GGA) and local density approximation (LDA) methods. The results have shown that both GGA and LDA methods can process the structural optimization in good agreement with the available experimental parameters in the compounds. Furthermore, the elastic properties and Debye temperatures estimated by LDA method are typically larger than the GGA methods. However, the GGA methods can make better prediction with the experimental values of Debye temperature in V3Ir, V3Pt and V3Au, signifying the precision of the calculating work. Based on the E–V data derived from the GGA method, the variations of the Debye temperature, coefficient of thermal expansion and heat capacity under pressure ranging from 0 GPa to 50 GPa and at temperature ranging from 0 K to 1500 K were obtained and analyzed for all compounds using the quasi-harmonic Debye model.


2019 ◽  
Vol 33 (28) ◽  
pp. 1950340 ◽  
Author(s):  
S. Chandra ◽  
Anita Sinha ◽  
V. Kumar

The electronic and elastic properties of [Formula: see text] defect-chalcopyrite semiconductors have been studied using first-principle density functional theory (DFT) calculations. The lattice constants, energy band gap, elastic stiffness constants, bulk modulus, shear modulus, shear anisotropy factor, Young’s modulus, Debye temperature, Poisson’s ratio and B/G ratio have been computed. The values of elastic constants of 14 defect-chalcopyrites and Debye temperature for 18 compounds have been reported for the first time. The obtained results are in reasonable agreement with the experimental values in few cases where experiments are performed and reported values.


1963 ◽  
Vol 7 ◽  
pp. 14-21
Author(s):  
Charles P. Gazzara ◽  
Raymond M. Middleton

AbstractValues of the Debye temperature 0 for iron-manganese solid-solution alloys have been determined from X-ray diffracted intensity measurements of powder specimens at ambient temperatures of 310, 239, and 98°K. Corrections to 0 were made with respect to the temperature-dependence of Θ, temperature diffuse scattering, dispersion, volume expansion of the alloy, and the temperature gradient through the specimen. The variation of Θ with temperature has been found to be approximately linear, the value of Θ decreasing 3 % between 98 and SICTK. for a nominal Fe–4%Mn alloy.Increasing the concentration of manganese in an iron-manganese solid-solution alloy decreases Θ in qualitative agreement with Lindemann's equation. The values of Θ for other s olid-solution alloys computed using Lindemann's equation also agree with reported experimental values of Θ. The Debye temperature of a nominal Fe-3%Mn alloy annealed for 2 hr at 300, 600, and 700°C has not been found to maximize at 600°C as has been reported by Il'ina et al. On the contrary, Θ decreases with increasing annealing temperature until, in the range 600 to 700°C, it reaches its true value; and at these temperatures the powder was found to be fully annealed.


Author(s):  
J. S. Lally ◽  
L. E. Thomas ◽  
R. M. Fisher

A variety of materials containing many different microstructures have been examined with the USS MVEM. Three topics have been selected to illustrate some of the more recent studies of diffraction phenomena and defect, grain and multi-phase structures of metals and minerals.(1) Critical Voltage Effects in Metals and Alloys - This many-beam dynamical diffraction phenomenon, in which some Bragg resonances vanish at certain accelerating voltages, Vc, depends sensitively on the spacing of diffracting planes, Debye temperature θD and structure factors. Vc values can be measured to ± 0.5% in the HVEM ana used to obtain improved extinction distances and θD values appropriate to electron diffraction, as well as to probe local bonding effects and composition variations in alloys.


The work of multilayer glass structures for central and eccentric compression and bending are considered. The substantiation of the chosen research topic is made. The description and features of laminated glass for the structures investigated, their characteristics are presented. The analysis of the results obtained when testing for compression, compression with bending, simple bending of models of columns, beams, samples of laminated glass was made. Overview of the types and nature of destruction of the models are presented, diagrams of material operation are constructed, average values of the resistance of the cross-sections of samples are obtained, the table of destructive loads is generated. The need for development of a set of rules and guidelines for the design of glass structures, including laminated glass, for bearing elements, as well as standards for testing, rules for assessing the strength, stiffness, crack resistance and methods for determining the strength of control samples is emphasized. It is established that the strength properties of glass depend on the type of applied load and vary widely, and significantly lower than the corresponding normative values of the strength of heat-strengthened glass. The effect of the connecting polymeric material and manufacturing technology of laminated glass on the strength of the structure is also shown. The experimental values of the elastic modulus are different in different directions of the cross section and in the direction perpendicular to the glass layers are two times less than along the glass layers.


Author(s):  
A.N. Shushpanov ◽  
◽  
A.Ya. Vasin ◽  
V.M. Raykova ◽  
G.G. Gadzhiev ◽  
...  

The article considers two intermediate products of positive photoresists (1,2-naphthoquinonediazide-(2)-5-sulfonic acid of monosodium salt — Dye M and 1,2-naphthoquinonediazide-(2)-5-sulfochloride — Dye N2) from the standpoint of the tendency to explosive transformation. The experimental values of flash points determined on the OTP setup were 130 °C for Dye M and 95 °C for Dye N2. These values are close to the temperatures of the beginning of intensive exothermic decomposition (132 and 111 °C, respectively) obtained by thermogravimetric analysis. In addition, this analysis showed the presence of exothermic peaks in the studied samples both in the air and in an inert atmosphere of helium, which is a necessary condition for the manifestation of a tendency to explosive transformation. To confirm the possibility of explosive transformation, the flash points of substances were also determined by the calculation method according to the formula, which is a consequence of the problem of thermal explosion during convective heat exchange with the environment, and gave a result close to the experimental one (the values were 138 and 105 °C, respectively). For this calculation the following was used: the kinetic parameters determined by the Kissinger method, the values of the density of substances determined on an automatic pycnometer, as well as the values of the heat of explosive transformation obtained with the help of the Real computer thermodynamic program. The research results confirming the tendency of the investigated compounds to explosive transformation, as well as the critical temperatures, exceeding which is unacceptable, were transferred to the production of FGUP GNTs NIOPIK to create a safe technological process, safe storage and transportation conditions. Considering the accuracy of the measuring devices, the process temperature should not exceed 125 °C for Dye M and 90 °C for Dye N2. The conducted studies and calculations show that the computational and experimental approaches have good convergence, give values in a close temperature range, and increase the reliability of the obtained results.


2020 ◽  
Author(s):  
Maximilian Kuhn ◽  
Stuart Firth-Clark ◽  
Paolo Tosco ◽  
Antonia S. J. S. Mey ◽  
Mark Mackey ◽  
...  

Free energy calculations have seen increased usage in structure-based drug design. Despite the rising interest, automation of the complex calculations and subsequent analysis of their results are still hampered by the restricted choice of available tools. In this work, an application for automated setup and processing of free energy calculations is presented. Several sanity checks for assessing the reliability of the calculations were implemented, constituting a distinct advantage over existing open-source tools. The underlying workflow is built on top of the software Sire, SOMD, BioSimSpace and OpenMM and uses the AMBER14SB and GAFF2.1 force fields. It was validated on two datasets originally composed by Schrödinger, consisting of 14 protein structures and 220 ligands. Predicted binding affinities were in good agreement with experimental values. For the larger dataset the average correlation coefficient Rp was 0.70 ± 0.05 and average Kendall’s τ was 0.53 ± 0.05 which is broadly comparable to or better than previously reported results using other methods. <br>


2019 ◽  
Author(s):  
Danilo Carmona ◽  
Pablo Jaque ◽  
Esteban Vöhringer-Martinez

<div><div><div><p>Peroxides play a central role in many chemical and biological pro- cesses such as the Fenton reaction. The relevance of these compounds lies in the low stability of the O–O bond which upon dissociation results in radical species able to initiate various chemical or biological processes. In this work, a set of 64 DFT functional-basis set combinations has been validated in terms of their capability to describe bond dissociation energies (BDE) for the O–O bond in a database of 14 ROOH peroxides for which experimental values ofBDE are available. Moreover, the electronic contributions to the BDE were obtained for four of the peroxides and the anion H2O2− at the CBS limit at CCSD(T) level with Dunning’s basis sets up to triple–ζ quality provid- ing a reference value for the hydrogen peroxide anion as a model. Almost all the functionals considered here yielded mean absolute deviations around 5.0 kcal mol−1. The smallest values were observed for the ωB97 family and the Minnesota M11 functional with a marked basis set dependence. Despite the mean deviation, order relations among BDE experimental values of peroxides were also considered. The ωB97 family was able to reproduce the relations correctly whereas other functionals presented a marked dependence on the chemical nature of the R group. Interestingly, M11 functional did not show a very good agreement with the established order despite its good performance in the mean error. The obtained results support the use of similar validation strategies for proper prediction of BDE or other molecular properties by DF Tmethods in subsequent related studies.</p></div></div></div>


2018 ◽  
Vol 1 (1) ◽  
pp. 142-150
Author(s):  
Murat Tunc ◽  
Ayse Nur Esen ◽  
Doruk Sen ◽  
Ahmet Karakas

A theoretical post-dryout heat transfer model is developed for two-phase dispersed flow, one-dimensional vertical pipe in a post-CHF regime. Because of the presence of average droplet diameter lower bound in a two-phase sparse flow. Droplet diameter is also calculated. Obtained results are compared with experimental values. Experimental data is used two-phase flow steam-water in VVER-1200, reactor coolant system, reactor operating pressure is 16.2 MPa. On heater rod surface, dryout was detected as a result of jumping increase of the heater rod surface temperature. Results obtained display lower droplet dimensions than the experimentally obtained values.


Sign in / Sign up

Export Citation Format

Share Document