scholarly journals Effect of Variable Tube Wall Thicknesses of Al-Mg-Si Alloy Tube During Electromagnetic Compression using Four Turn Axi-Symmetric Coil

2020 ◽  
Vol 9 (1) ◽  
pp. 1427-1431

Electromagnetic compression (EMC) is a solid state, high velocity process of deformation of materials. In this process the enhancement of the formability is achieved due to high strain rate forming. In the present study Aluminum alloy AA6061 tube has been compressed using four turn axisymmetric coil. The effect of variable tube wall thicknesses i.e. 1.0, 1.7, and 2.4 mm during the compression of the Al-Mg-Si Aluminum alloy tube electromagnetically has been studied. A constant gap between coil inner diameter (ID) and workpiece outer diameter (OD) was maintained. It has been found that the tube deformation was maximum when the wall thickness was minimum. For compression, 8 kJ energy was used with double power bank. A three dimensional (3D) model of four turn compression coil has been proposed using LS-DYNA software. Comparison between the numerical simulation and experimental results showed a close agreement between both the results. Compression using EMF process can be used in modern industries like automotive, aerospace and nuclear power plants.

2011 ◽  
Vol 704-705 ◽  
pp. 1492-1497
Author(s):  
Ji Shun Song ◽  
Yun Tao Li ◽  
De Heng Du ◽  
Xu Ma ◽  
Kang Yin

Eccentric extrusion method is used in this paper,through this method achieved bending aluminum-alloy tube extrusion forming process. Used finite element method,achieved three-dimensional numerical simulation of bending aluminum-alloy tube in eccentric extrusion by DEFORM-3D finite element commercial software,analyzed velocity field distribution,material flow,squeezing pressure,stress and strain field distribution of the process;Introduce the mechanism of one step direct extrusion forming tube bending process,it will be of great guiding significance the actual die design.


Author(s):  
Mitsuru Kageyama ◽  
Yoshihiko Hino ◽  
Satoshi Moro

In Japan, the development of the next generation NPP has been conducted in recent years. In the equipment/piping design of the plant, seismic condition has been required much more mitigate than before. So, the three-dimensional (abbreviation to 3D) seismic isolation system development has also been conducted since 2000. The superlative 3D base isolation system for the entire building was proposed. The system is composed of cable reinforced air springs, rocking arresters and viscous dampers. Dimensions of the air spring applied to the actual power plant are 8 meters in the outer-diameter and 3.5 meters in height. The allowable half strokes are 1.0 meters in horizontal and 0.5 meters in vertical respectively. The maximum supporting weight for a single device is 70 MN. The inner design air pressure is about 1.8MPa. This air spring has a distinguishing feature, which realizes 3D base isolation with a single device, whose natural periods are about 4 seconds in horizontal and about 3 seconds in vertical. In order to verify the 3D performance of this system, several feasibility tests were conducted. Firstly, 3D shaking table tests were conducted. The test specimen is scaled 1/4 of the actual device. The outer diameter and inner air pressure of air spring is 2 meters and 0.164 MPa. Next, a pressure resistant test for the sub cable, textile sheet and rubber sheet, which composed air spring, were conducted as a full scale model test. Then, air permeation test for the rubber sheet was also conducted. As a result, the proposed system was verified that it could be applied to the actual nuclear power plants.


Author(s):  
Akemi Nishida

It is becoming important to carry out detailed modeling procedures and analyses to better understand the actual phenomena. Because some accidents caused by high-frequency vibrations of piping have been recently reported, the clarification of the dynamic behavior of the piping structure during operation is imperative in order to avoid such accidents. The aim of our research is to develop detailed analysis tools and to determine the dynamic behavior of piping systems in nuclear power plants, which are complicated assemblages of different parts. In this study, a three-dimensional dynamic frame analysis tool for wave propagation analysis is developed by using the spectral element method (SEM) based on the Timoshenko beam theory. Further, a multi-connected structure is analyzed and compared with the experimental results. Consequently, the applicability of the SEM is shown.


Author(s):  
Omid Malekzadeh ◽  
Matthew Monid ◽  
Michael Huang

Abstract Three-Dimensional (3D) CAD models are utilized by many designers; however, they are rarely utilized to their full potential. The current mainstream method of design process and communication is through design documentation. They are limited in depth of information, compartmentalized by discipline, fragmented into various segments, communicated through numerous layers, and finally, printed onto an undersized paper by the stakeholders and end-users. Large nuclear projects, such as refurbishments and decommissioning, suffer from spatial, interface, and interreference challenges, unintentional cost and schedule overruns, and quality concerns that can be rooted to the misalignments between designed and in-situ or previously as-built conditions that tend to stem from inaccessibility and lack of adequate data resolution during the transfer of technical information. This paper will identify the technologies and the methodology used during several piping system modifications of existing nuclear power plants, and shares the lessons learned with respect to the benefits and shortcomings of the approach. Overall, it is beneficial to leverage available multi-dimensional technologies to enhance various engineering and execution phases. The utilization and superposition of various spatial models into 3D and 4D formats, enabled the modification projects to significantly reduce in-person plant walkdown efforts, provide highly accurate as-found data, and enable stakeholders of all disciplines and trades to review the as-found, as-designed, and simulated as-installed modification; including the steps in between without requiring significant plant visits. This approach will therefore reduce the field-initiated changes that tend to result in design/field variations; resulting in less reliance on Appendix T of ASME BPVC Section III, reduction in the design registration reconciliations efforts, and it aligns with the overarching goal of EPRI guideline NCIG-05. Beyond the benefits to design and execution, the multidimensional approach will provide highly accurate inputs to some of the nuclear safety’s Beyond Design Basis Assessments (BDBA) and allowed for the incorporation of actual design values as input and hence removing the unnecessary over-conservatisms within some of the inputs.


Sign in / Sign up

Export Citation Format

Share Document