scholarly journals A Neural Network Model for the Compressive Strength of a Hybrid LM6 Aluminium Alloy Composite

2019 ◽  
Vol 8 (2S8) ◽  
pp. 1652-1654

Adding more than one reinforcement increases the flexibility in composites. The objective of the work is to develop a model to predict the compressive strength in an LM6 aluminium alloy reinforced with SiC and flyash particles. Central composite rotatable design had been employed to carry out the experiments with size and composition of the reinforcements as the parameters. ANN model developed has good prediction accuracy with error being less than 5%.

2020 ◽  
pp. 70-77
Author(s):  
Sergei Anfilets ◽  
Sergei Bezobrazov ◽  
Vladimir Golovko ◽  
Anatoliy Sachenko ◽  
Myroslav Komar ◽  
...  

In this work, we draw attention to prediction of football (soccer) match winner. We propose the deep multilayer neural network based on elastic net regularization that predicts the winner of the English Premier League football matches. Our main interest is to predict the match result (win, loss or draw). In our experimental study, we prove that using open access limited data such as team shots, shots on target, yellow and red cards, etc. the system has a good prediction accuracy and profitability. The proposed approach should be considered as a basis of Oracle engine for predicting the match outcomes.


2011 ◽  
Vol 109 ◽  
pp. 636-640
Author(s):  
Bo Tang ◽  
Min Xia

With China's rapid economic development, credit scoring has become very important. This paper presents a new fuzzy support vector machine algorithm used to solve the problems of credit scoring. The empirical results show that the proposed fuzzy membership model is valid ,the algorithm has good prediction accuracy and anti-noise ability.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Kraiwut Tuntisukrarom ◽  
Raungrut Cheerarot

The objective of this work was to examine the compressive strength behavior of ground bottom ash (GBA) concrete by using an artificial neural network. Four input parameters, specifically, the water-to-binder ratio (WB), percentage replacement of GBA (PR), median particle size of GBA (PS), and age of concrete (AC), were considered for this prediction. The results indicated that all four considered parameters affect the strength development of concrete, and GBA with a high fineness can act as a good pozzolanic material. The optimal ANN model had an architecture with two hidden layers, with six neurons in the first hidden layer and one neuron in the second hidden layer. The proposed ANN-based explicit equation represented a highly accurate predictive model, for which the statistical values of R2 were higher than 0.996. Moreover, the compressive strength behavior determined using the optimal ANN model closely followed the trend lines and surface plots of the experimental results.


Sensors ◽  
2020 ◽  
Vol 20 (23) ◽  
pp. 6756
Author(s):  
DongHyun Ko ◽  
Seok-Hwan Choi ◽  
Sungyong Ahn ◽  
Yoon-Ho Choi

With the development of wireless networks and mobile devices, interest on indoor localization systems (ILSs) has increased. In particular, Wi-Fi-based ILSs are widely used because of the good prediction accuracy without additional hardware. However, as the prediction accuracy decreases in environments with natural noise, some studies were conducted to remove it. So far, two representative methods, i.e., the filtering-based method and deep learning-based method, have shown a significant effect in removing natural noise. However, the prediction accuracy of these methods severely decreased under artificial noise caused by adversaries. In this paper, we introduce a new media access control (MAC) spoofing attack scenario injecting artificial noise, where the prediction accuracy of Wi-Fi-based indoor localization system significantly decreases. We also propose a new deep learning-based indoor localization method using random forest(RF)-filter to provide the good prediction accuracy under the new MAC spoofing attack scenario. From the experimental results, we show that the proposed indoor localization method provides much higher prediction accuracy than the previous methods in environments with artificial noise.


2016 ◽  
Author(s):  
Rama Arora ◽  
Anju Sharma ◽  
Suresh Kumar ◽  
Gurmel Singh ◽  
O. P. Pandey

Mechanika ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 12-21
Author(s):  
Chuanbo XU ◽  
Maoru CHI ◽  
Liangcheng DAI ◽  
Yiping JIANG ◽  
Yongfa CHEN ◽  
...  

The research on the mechanical model of rubber spring is one of the hot spots in train dynamics. In order to accurately calculate the viscoelastic force of the rubber spring, especially the non-hyperelastic forces (NHEF) part, a NHEF model is proposed based on the elliptic approximation method. Furthermore, the calculation formula of periodic energy consumption is put forward. The NHEF model is verified by experiments, and the function λ isconstructed to verify the formula of periodic energy consumption. The calculation results showed that the NHEF model had high accuracy in predicting the dynamic and quasi-static NHEF of rubber spring, the prediction accuracy of shear condition was better than that of compression condition, and the accuracy of quasi-static condition was better than that of dynamic condition; the calculation formula of periodic energy consumption had a good prediction accuracy in all working conditions.


2020 ◽  
Author(s):  
Elise Ai Hwee Kho ◽  
Jill N. Fernandes ◽  
Andrew C. Kotze ◽  
Glen P. Fox ◽  
Maggy T. Sikulu-Lord ◽  
...  

Abstract Background: Existing diagnostic methods for the parasitic gastrointestinal nematode, Haemonchus contortus, are time consuming and require specialised expertise, limiting their utility in the field. A practical, on-farm diagnostic tool could facilitate timely treatment decisions, preventing production and welfare loss in the flock. We previously demonstrated the ability of visible-near infrared (vis-NIR) spectroscopy to detect and quantify blood in sheep faeces with high accuracy. Here we investigate whether variation in sheep type and environment affect the prediction accuracy of vis-NIR spectroscopy in quantifying blood in faeces.Methods: Vis-NIR spectra were obtained from worm-free sheep faeces from different environments in South Australia (SA) and New South Wales (NSW), Australia and spiked with various sheep blood concentrations collected. Spectra were analysed using principal component analysis (PCA), and calibration models were built around the haemoglobin (Hb) wavelength region (387 – 609 nm) using partial least squares (PLS) regression. Models were used to predict Hb concentrations in spiked faeces from SA and naturally infected Queensland (QLD) faeces. Naturally occurring blood in QLD samples was quantified using Hemastix® and FAMACHA© scores.Results: PCA showed that location, class of sheep and pooled/individual samples were factors affecting the Hb predictions in sheep faeces. The calibration models successfully differentiated ‘healthy’ SA samples from those requiring anthelmintic treatment with moderate to good prediction accuracy (sensitivity: 57 – 94%, specificity: 44 – 79%). The models were not predictive for naturally infected QLD samples, which may be due in part to variability of faecal background and blood chemistry between samples, or the difference in validation methods used for blood quantification. PCA of QLD samples, however, identified a difference between samples containing high and low quantities of blood.Conclusion: This study demonstrates the potential of vis-NIR spectroscopy for estimating blood concentration in faeces from various types of sheep and environmental backgrounds. However, the calibration models developed here did not capture enough environmental variation to accurately predict Hb in faeces collected from environments different to those used in the calibration model. Consequently, it will be necessary to establish models that incorporate samples that are more representative of areas where H. contortus is endemic for the accurate prediction of H. contortus infections in these regions.


2020 ◽  
Author(s):  
Elise Ai Hwee Kho ◽  
Jill N. Fernandes ◽  
Andrew C. Kotze ◽  
Glen P. Fox ◽  
Maggy T. Sikulu-Lord ◽  
...  

Abstract Background: Existing diagnostic methods for the parasitic gastrointestinal nematode, Haemonchus contortus, are time consuming and require specialised expertise, limiting their utility in the field. A practical, on-farm diagnostic tool could facilitate timely treatment decisions, preventing production and welfare loss in the flock. We previously demonstrated the ability of visible-near infrared (vis-NIR) spectroscopy to detect and quantify blood in sheep faeces with high accuracy. Here we investigate whether variation in sheep type and environment affect the prediction accuracy of vis-NIR spectroscopy in quantifying blood in faeces. Methods: Vis-NIR spectra were obtained from worm-free sheep faeces collected from different environments and sheep types in South Australia (SA) and New South Wales (NSW), Australia and spiked with various sheep blood concentrations. Spectra were analysed using principal component analysis (PCA), and calibration models were built around the haemoglobin (Hb) wavelength region (387 – 609 nm) using partial least squares (PLS) regression. Models were used to predict Hb concentrations in spiked faeces from SA and naturally infected sheep faeces from Queensland (QLD). QLD samples were quantified using Hemastix® and FAMACHA © scores. Results: PCA showed that location, class of sheep and pooled/individual samples were factors affecting the Hb predictions. The models successfully differentiated ‘healthy’ SA samples from those requiring anthelmintic treatment with moderate to good prediction accuracy (sensitivity: 57 – 94%, specificity: 44 – 79%). The models were not predictive for blood in naturally infected QLD samples, which may be due in part to variability of faecal background and blood chemistry between samples, or the difference in validation methods used for blood quantification. PCA of QLD samples, however, identified a difference between samples containing high and low quantities of blood. Conclusion: This study demonstrates the potential of vis-NIR spectroscopy for estimating blood concentration in faeces from various types of sheep and environmental backgrounds. However, the calibration models developed here did not capture enough environmental variation to accurately predict Hb in faeces collected from environments different to those used in the calibration model. Consequently, it will be necessary to establish models that incorporate samples that are more representative of areas where H. contortus is endemic.


2020 ◽  
Vol 57 (10) ◽  
pp. 1453-1471 ◽  
Author(s):  
Peiyuan Lin ◽  
Pengpeng Ni ◽  
Chengchao Guo ◽  
Guoxiong Mei

This study compiles a broad database containing 312 measured maximum soil nail loads under operational conditions. The database is used to re-assess the prediction accuracies of the default Federal Highway Administration (FHWA) nail load model and its modified version previously reported in the literature. Predictions using the default and modified FHWA models are found to be highly dispersive. Moreover, the prediction accuracy is statistically dependent on the magnitudes of the predicted nail load and several model input parameters. The modified FHWA model is then recalibrated by introducing extra empirical terms to account for the influences of wall geometry, nail design configuration, and soil shear strength parameters on the evolvement of nail loads. The recalibrated FHWA model is demonstrated to have much better prediction accuracy compared to the default and modified models. Next, an artificial neural network (ANN) model is developed for mapping soil nail loads, which is shown to be the most advantageous one as it is accurate on average and the dispersion in prediction is low. The abovementioned dependency issue is also not present in the ANN model. The practical value of the ANN model is highlighted by applying it to reliability-based designs of soil nails against internal limit states.


Sign in / Sign up

Export Citation Format

Share Document