scholarly journals Design and Development of a Carbon Footprint Calculation Model for Universiti Tenaga Nasional

2019 ◽  
Vol 8 (4) ◽  
pp. 6236-6239

Carbon footprint is the amount of a greenhouse gas (GHG) produced as a result of human activities, usually expressed in equivalent kilograms of carbon dioxide (CO2). As the amount of greenhouse gases emission increases, the global temperature increases. In the context of a global awareness of the climate change, carbon footprint has recently become extensively calculated and ways to reduce it are proposed. The purpose of this research is to calculate the amount of carbon footprint discharged by students in College of Engineering (COE), Universiti Tenaga Nasional (UNITEN). From this research a model to calculate the carbon dioxide emission released from the activities done by the COE students particularly, is developed. Literature reviews are done leading to an explanation of what emission categories should be presented in a CO2 calculation for a university. This includes emission sources in each buildings, activities and services in COE particularly. Conducting survey is one of the methods to get the data from the students and staffs directly. From this data, the calculation is done and tabulated in the Excel template. From this template model, the carbon footprint for each or total students of COE can be known. Referring to this data, CO2 reduction strategy in COE particularly and UNITEN generally can be proposed.

2020 ◽  
Vol 12 (14) ◽  
pp. 5873
Author(s):  
Nur Fatma Fadilah Yaacob ◽  
Muhamad Razuhanafi Mat Yazid ◽  
Khairul Nizam Abdul Maulud ◽  
Noor Ezlin Ahmad Basri

This paper presents a review of carbon dioxide (CO2) emissions from transportation in an attempt to establish a quick and suboptimal update of the methods used to calculate and analyze CO2 emissions from transportation. Transportation is the largest contributor to air pollution through the release of high amounts of CO2 gas into the atmosphere. The methods for calculating and analyzing the carbon footprint of transportation; which is of critical importance in the management of greenhouse gases that contribute to global warming; are still being developed. However; there are some differences in the definitions and methods used to calculate the carbon footprint of transportation in previous studies. This review focuses on the similarities of the methods used to measure CO2 emissions as well as the analyses used to evaluate the emissions. This paper will also highlight the advantages and limitations of each research work. By doing this; the present study contributes to the selection of appropriate methods for calculating CO2 emissions from transportation and draws attention to environmental issues. It is hoped that the implementation of the most appropriate framework will help to reduce CO2 emissions from transportation


Author(s):  
Rajasekaran Elakkiya ◽  
Govindhan Maduraiveeran

Design of high-performance and Earth-abundant electrocatalysts for electrochemical carbon dioxide (CO2) reduction reaction (CO2RR) into fuels and value-added chemicals offers an emergent pathway for environment and energy sustainable concerns. Herein,...


Author(s):  
Chuqian Xiao ◽  
Ling Cheng ◽  
Yating Wang ◽  
Jinze Liu ◽  
Rongzhen Chen ◽  
...  

Anodic selective electro‐oxidation of methanol paring with cathodic carbon dioxide (CO2) reduction is regarded as a promising strategy to generate value added formate product. We firstly design a 3D‐assembled NiCo...


2019 ◽  
Vol 15 (1) ◽  
pp. 143-148 ◽  
Author(s):  
Yolanda G Aranda-Jimenez ◽  
Edgardo J Suarez-Dominguez

Abstract In the present work the carbon footprint for a material developed in the Faculty of Architecture, Design and Urbanism of the Autonomous University of Tamaulipas (UAT) constituted by argillaceous earth, aloe juice and fiber of ixtle with utility like the inner coating of walls in buildings was determined. The objective of this paper is the calculation of the contribution of carbon dioxide (CO2) by the plant, considering the stoichiometry of CO2 absorption accompanied by the determination at the laboratory level. It was found that the use of organic materials in mortar mixtures, when they are produced manually by the person who will use them, and that is common in cases of self-construction, can generate approximately −0.45 kg of CO2 equivalent for each kilogram of plant produced for the preparation of mixtures. In addition, the equivalent CO2 was calculated for the elaboration of a cubic meter of useful mixture as a wall covering obtaining a value below the equivalent 14 kg of CO2.


2018 ◽  
Vol 30 (0) ◽  
Author(s):  
Jurandir Rodrigues de Mendonça Júnior ◽  
André Megali Amado ◽  
Luciana de Oliveira Vidal ◽  
Arthur Mattos ◽  
Vanessa Becker

Abstract Aim: This study aimed to evaluate the carbon dioxide (CO2) dynamics in tropical semi-arid reservoirs during a prolonged drought period as well as to test if the trophic state affects the CO2 saturation. Methods This study was performed in four reservoirs located in the tropical semi-arid region in the northeast of Brazil. All samplings were performed between 9 and 12 am using a Van Dorn Bottle. Samples for partial pressure of carbon dioxide (pCO2 ) measurements were taken in the sub-surface as well as samples for total phosphorus and chlorophyll-a. Correlation analysis and linear regression were used to detect relations among the calculated pCO2, water volume and chlorophyll-a. Results The water level reduction due to atypical droughts caused chlorophyll-a concentrations to increase, which in turn, led to CO2 reduction in the water. However, CO2 concentrations were very variable and an alternation between CO2 sub-saturation and super-saturation conditions was observed. This paper showed that water volume and chlorophyll-a were important regulators of CO2 in the water, as well as important carbon balance predictors in the tropical semiarid reservoirs. Conclusions The results of this paper indicate that the eutrophication allied to drastic water level reductions lead to a tendency of autotrophic metabolism of these systems.


Author(s):  
Chen ◽  
Zhuo ◽  
Xu ◽  
Xu ◽  
Gao

As a result of China’s economic growth, air pollution, including carbon dioxide (CO2) emission, has caused serious health problems and accompanying heavy economic burdens on healthcare. Therefore, the effect of carbon dioxide emission on healthcare expenditure (HCE) has attracted the interest of many researchers, most of which have adopted traditional empirical methods, such as ordinary least squares (OLS) or quantile regression (QR), to analyze the issue. This paper, however, attempts to introduce Bayesian quantile regression (BQR) to discuss the relationship between carbon dioxide emission and HCE, based on the longitudinal data of 30 provinces in China (2005–2016). It was found that carbon dioxide emission is, indeed, an important factor affecting healthcare expenditure in China, although its influence is not as great as the income variable. It was also revealed that the effect of carbon dioxide emission on HCE at a higher quantile was much smaller, which indicates that most people are not paying sufficient attention to the correlation between air pollution and healthcare. This study also proves the applicability of Bayesian quantile regression and its ability to offer more valuable information, as compared to traditional empirical tools, thus expanding and deepening research capabilities on the topic.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Peixin Zhao ◽  
Bo Liu ◽  
Lulu Xu ◽  
Di Wan

Location optimization of distribution centers is a systematic and important task in logistics operations. Recently, reducing carbon footprint is becoming one of the decision-making factors in selecting the locations for distribution centers. This paper analyzes the necessity of industrial carbon dioxide emission cost internalization in four aspects and builds a model for multidistribution centers location in effort of reducing carbon footprint that can provide optimized strategy support for decision makers and logistic operators. Numerical examples are presented to illustrate the feasibility and effectiveness of the models.


2022 ◽  
Vol 7 (1) ◽  
pp. 014-022
Author(s):  
Glenn Baxter

One of the most pervasive trends in the global airport industry in recent times has been the adoption of green renewable technologies. Many airports around the world have now installed photovoltaic (PV) solar systems as a key environmental measure. One of the critical areas of energy management at an airport is the provision of power and cooling at the gate, which is used during the aircraft turnaround process. Historically, the aircraft auxiliary power unit (APU) was the primary power source during the aircraft turnaround process. In recent times, airports have transitioned to the use of fixed electrical ground power (FEGP) and preconditioned air to mitigate the emissions from use of aircraft auxiliary power unit (APUs). Based on an instrumental case study research approach, this study has examined how Moi International Airport in Kenya has mitigated the airport’s carbon footprint by using a green, renewable energy system. The study’s qualitative data was examined by document analysis. The case study revealed that Moi International Airport has installed a photovoltaic (PV) solar system with a 500kW capacity that is used to primarily provide solar power at the airport’s apron area. The photovoltaic (PV) solar system has delivered Moi International Airport with an important environmental related benefit as it has enabled the airport to reduce it carbon footprint, as the photovoltaic (PV) solar system has reduced the airport’s carbon dioxide (CO2) emissions by an estimated 1,300 tonnes per annum.


Sign in / Sign up

Export Citation Format

Share Document