scholarly journals Maximizing Savings in Electricity Bills Based on Customer’s Load Profile

2019 ◽  
Vol 8 (4) ◽  
pp. 6542-6546

With the high demand in electricity consumption nowadays, it is crucial for regulator and utilities to ensure sufficient energy supply to meet electricity demand. Electricity demand is influenced by several factors such as number of customers, customer behavior, working hours, weather condition and holidays. Integrating renewable energy technology as part of electricity generation for self consumption has indirectly provide an option to customer to reduce his electricity consumption from the grid and help to save his electricity bill. One of the simplest solutions to install renewable energy sources is by installing rooftop solar photovoltaic (PV). In this paper, the economic feasibility of installing solar PV is discussed based on commercial customer load profile. This paper also presents the suitable PV sizing based on the payback analysis based on customer load profile. A commercial customer in Petaling Jaya, Selangor is used as a case study for this analysis. This study indicates that customer will be able to reduce their electricity bill consumption with the integration of solar PV system on the rooftop of their building. Customer is able to save their monthly electricity up to 28% if a total solar PV capacity of 1256kW is installed. The payback from this study indicates the payback period is approximately around 9 years

2021 ◽  
pp. 0309524X2110241
Author(s):  
Nindra Sekhar ◽  
Natarajan Kumaresan

To overcome the difficulties of extending the main power grid to isolated locations, this paper proposes the local installation of a combination of three renewable energy sources, namely, a wind driven DFIG, a solar PV unit, a biogas driven squirrel-cage induction generator (SCIG), and an energy storage battery system. In this configuration one bi-directional SPWM inverter at the rotor side of the DFIG controls the voltage and frequency, to maintain them constant on its stator side, which feeds the load. The PV-battery also supplies the load, through another inverter and a hysteresis controller. Appropriately adding a capacitor bank and a DSTATCOM has also been considered, to share the reactive power requirement of the system. Performance of various modes of operation of this coordinated scheme has been studied through simulation. All the results and relevant waveforms are presented and discussed to validate the successful working of the proposed system.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2700
Author(s):  
Grace Muriithi ◽  
Sunetra Chowdhury

In the near future, microgrids will become more prevalent as they play a critical role in integrating distributed renewable energy resources into the main grid. Nevertheless, renewable energy sources, such as solar and wind energy can be extremely volatile as they are weather dependent. These resources coupled with demand can lead to random variations on both the generation and load sides, thus complicating optimal energy management. In this article, a reinforcement learning approach has been proposed to deal with this non-stationary scenario, in which the energy management system (EMS) is modelled as a Markov decision process (MDP). A novel modification of the control problem has been presented that improves the use of energy stored in the battery such that the dynamic demand is not subjected to future high grid tariffs. A comprehensive reward function has also been developed which decreases infeasible action explorations thus improving the performance of the data-driven technique. A Q-learning algorithm is then proposed to minimize the operational cost of the microgrid under unknown future information. To assess the performance of the proposed EMS, a comparison study between a trading EMS model and a non-trading case is performed using a typical commercial load curve and PV profile over a 24-h horizon. Numerical simulation results indicate that the agent learns to select an optimized energy schedule that minimizes energy cost (cost of power purchased from the utility and battery wear cost) in all the studied cases. However, comparing the non-trading EMS to the trading EMS model operational costs, the latter one was found to decrease costs by 4.033% in summer season and 2.199% in winter season.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 431
Author(s):  
Nur Najihah Abu Bakar ◽  
Josep M. Guerrero ◽  
Juan C. Vasquez ◽  
Najmeh Bazmohammadi ◽  
Muzaidi Othman ◽  
...  

Microgrids are among the promising green transition technologies that will provide enormous benefits to the seaports to manage major concerns over energy crises, environmental challenges, and economic issues. However, creating a good design for the seaport microgrid is a challenging task, considering different objectives, constraints, and uncertainties involved. To ensure the optimal operation of the system, determining the right microgrid configuration and component size at minimum cost is a vital decision at the design stage. This paper aims to design a hybrid system for a seaport microgrid with optimally sized components. The selected case study is the Port of Aalborg, Denmark. The proposed grid-connected structure consists of renewable energy sources (photovoltaic system and wind turbines), an energy storage system, and cold ironing facilities. The seaport architecture is then optimized by utilizing HOMER to meet the maximum load demand by considering important parameters such as solar global horizontal irradiance, temperature, and wind resources. Finally, the best configuration is analyzed in terms of economic feasibility, energy reliability, and environmental impacts.


2020 ◽  
pp. 114-125
Author(s):  
Tetyana DERKACH ◽  
Denys CHEBANENKO

Introduction. The topic of renewable energy today is one of the most relevant and requires consideration from the point of view of all components of this process, namely economic, financial, environmental, technological, and others. The transition to renewable energy is already irreversible today since natural resources are depleted, fuel prices are the subject to significant fluctuations, and the stable growth of the national economy is ensured by energy security. The purpose. The purpose of the article is to analyze the volume of global energy consumption, to analyze the impact of the introduction of renewable energy sources on the development of the national economy, to ensure energy security with the depletion of hydrocarbon resources and a slight diversification of their suppliers. Results. Today the Ukrainian economy is the most energy-intensive. Unstable energy prices are a threat both to the global economy and to each country separately. Therefore, in the event of a decrease in the supply of traditional energy resources, the importing countries experience the greatest difficulties. The existing tendency in Ukraine to increase the consumption of traditional energy sources, combined with the absence of a targeted policy aimed at reducing the volume of environmental pollution, will lead to an increase in negative economic consequences. The advantage of renewable energy sources is their equal distribution throughout the country (with the exception of water resources). This feature leads to the formation of one of the main characteristics of power systems based on renewable energy sources, namely, their decentralization. It should be borne in mind that the world energy market is made up of state and non-state participants. Non-state participants are showing an upward trend. However, the state should have the greatest influence on the national energy sector. Renewable energy is an area that, in the Ukrainian context, depends on state support, namely economic and administrative incentives. The dynamics of the development of renewable energy should be combined with the balanced development of the fuel and energy sector in Ukraine. Conclusions. The process of development and transition to renewable energy needs a systematic approach. Both qualitative and quantitative approaches are needed to assess the transition to renewable energy. An effective strategy for the transition to the introduction of renewable energy technologies should be justified by economic feasibility. The transition from traditional energy to renewable sources should lead to energy security, which contributes to stable economic growth, political independence, and improving the quality of the environmental component.


2021 ◽  
Vol 850 (1) ◽  
pp. 012008
Author(s):  
N Rajamurugu

Abstract Renewable energy sources become suitable valid options to reduce the dependency on fossil fuels or petroleum products. The International Renewable Energy Agency reports that the world will harvest 40% of energy from renewable energy sources by 2030. Conventional technologies such as solar PV technology, consumes higher capital per unit (kWh) of electricity generation cost significantly higher than the traditional sources. Hence, solar chimney power generation system can be suitable option for generating low cost energy. Solar chimneys are developed and tested by different researchers in enhancing the performance of the system. Studies on the geometric modifications of the collector, and chimney are limited. The aim of this paper is to analyse the experimental data obtained from a divergent solar chimney. Experimentation is carried under sunlight in an open atmosphere. The airflow rates in the chimneys are tested under different collector outlet height. The experimental results showed that a chimney with higher collector openings was performed well than other models. The computational analysis is also carried out using ANSYS Fluent software package which shows that the collector opening of 2.5m is recommended for higher high mass flow rate and system efficiency.


2021 ◽  
Vol 18 (1) ◽  
pp. 95-114
Author(s):  
Ana Radojevic ◽  
Danijela Nikolic ◽  
Jasna Radulovic ◽  
Jasmina Skerlic

The implementation of energy efficiency measures and use of renewable energy sources in educational buildings can significantly contribute to reducing energy consumption, but also to CO2 emissions in the entire public sector. The paper shows the comparison of energy consumption indicators for 61 elementary school buildings which have previously been divided in 12 groups, according to the period of construction and size, based on the national typology called TABULA, as the first step of further study on how to use the renewable energy sources. The aim of this paper is to use the energy benchmarking process to select representative facilities which are suitable for applying renewable energy sources, for their further energy efficiency improvement. Indicators of annual specific electricity consumption and CO2 emissions per unit area [kWh/m2] and per user [kWh/user] were calculated. After that, from two groups (in which the highest electricity consumption and CO2 emissions are 68.37% and 74.53% of the total consumption/ emissions), one representative facility was selected.


2017 ◽  
Vol 17(32) (2) ◽  
pp. 126-135
Author(s):  
Łukasz Kozar

The article presents changes that occurred in the production of electricity from renewable energy sources in the EU-28 and in Poland in the years of 2010-2015. The analysis of the changes was based on the data from Eurostat and the Local Data Bank. Based on the indicator of the share of electricity generated from renewable sources in gross electricity consumption, Poland in the period under discussion, was characterized as one of the highest dynamics of change among all EU countries. In addition, the article analyzes the situation concerning the production of electricity in Poland in the regional aspect. From the taken analyzes, it is clear that in all voivodeships, apart from Małopolskie voivodeship, in 2015, more electricity was produced from renewable sources compared to 2010. In the period under discussion, the share of electricity production from renewable sources in total electricity production also increased by 99% in Poland.


2015 ◽  
Vol 15 (1) ◽  
pp. 22-33 ◽  
Author(s):  
Saravanan Dhanushkodi ◽  
Vincent H. Wilson ◽  
Kumarasamy Sudhakar

Abstract Cashew nut farming in India is mostly carried out in small and marginal holdings. Energy consumption in the small scale cashew nut processing industry is very high and is mainly due to the high energy consumption of the drying process. The drying operation provides a lot of scope for energy saving and substitutions of other renewable energy sources. Renewable energy-based drying systems with loading capacity of 40 kg were proposed for application in small scale cashew nut processing industries. The main objective of this work is to perform economic feasibility of substituting solar, biomass and hybrid dryer in place of conventional steam drying for cashew drying. Four economic indicators were used to assess the feasibility of three renewable based drying technologies. The payback time was 1.58 yr. for solar, 1.32 for biomass and 1.99 for the hybrid drying system, whereas as the cost-benefit estimates were 5.23 for solar, 4.15 for biomass and 3.32 for the hybrid system. It was found that it is of paramount importance to develop solar biomass hybrid dryer for small scale processing industries.


Author(s):  
Sana Badruddin ◽  
Cameron Ryan Robertson-Gillis ◽  
Janice Ashworth ◽  
David J. Wright

The Ottawa Renewable Energy Cooperative is considering installing solar modules on the roofs of two buildings while they stay connected to the public electricity grid. Solar power produced over their own needs would be sent to the public electricity grid for a credit on their electricity bill. When they need more power than they are generating, these buildings would purchase electricity from the grid. In addition to paying for the electricity they purchase, they would be subject to a “demand charge” that applies each month to the hour during which their consumption is at a peak for that month. Any electricity consumed during that peak hour would be charged at a rate about 100 times the rate for other hours. The case addresses three questions: (1) Is it profitable for these organizations to install solar on their roofs? (2) Can profitability be increased by adding a battery? and (3) How sensitive is profitability to uncertainty in future electricity prices? The case shows how the answers to these questions depend on the profile of hourly electricity consumption during the day, which is very different from one building to the other.


Sign in / Sign up

Export Citation Format

Share Document