scholarly journals Topology Optimization of Automotive Gear using Fea

2019 ◽  
Vol 8 (4) ◽  
pp. 1079-1084

Gears are the key elements used to transmit power or motion from on shaft to another and it has wide range of applications. It's one of the major application is in the automobile gear box. Generally, gears fail when the working stress exceeds than the maximum permissible value. Here the generated stresses are directly in relation to amount power produced inside an engine, as well as also on torque. This study mainly focuses to identify the magnitude of the bending stresses generated in the selected gear set of CVT of a two-wheeler during power transmission as well as also tried to find different ways for reducing weight of the gear. Hence integrating the feature of topology optimization as a part of weight reduction over an existing part is considered as the key parameter of assessment for this work. In this study, gears of CVT gearbox of two-wheeler is analyzed for static loading under the application of tangential load resulting from maximum torque in the given application. After the study of the stress distribution on existing gears, the material removal area for weight reduction is identified on selected gears then the same study for stress distribution is carried out for proposed designs of topological optimization. Hence the both existing and proposed optimized designs are analyzed under static structural analysis for same loading and results for stress distribution are compared.

1965 ◽  
Vol 1 (1) ◽  
pp. 69-82 ◽  
Author(s):  
H Fessler ◽  
P Stanley

The dependence of the elastic stress distribution on the shape and thickness parameters in a wide range of torispherical drumheads has been examined using the photoelastic frozen-stress method. Peak principal stress indices are presented in the form of two contour systems; they have also been studied in terms of mean and bending stresses. An approximate approach to some of the practical problems of non-uniform stress gradients is suggested. Head distortions have been measured. A stress concentration factor based on the Maxwell-von Mises yield criterion is shown to be approximately equal to the conventional one.


2021 ◽  
Vol 2095 (1) ◽  
pp. 012097
Author(s):  
Wangjia Liu ◽  
Bingshan Liu ◽  
Gong Wang

Abstract Additive manufacturing has now entered a wide range of areas and plays an important role. There are many factors affecting the application of additive manufacturing, such as the amount of printing supplies, print product strength, print speed and so on. These factors potentially hinder the application of additive manufacturing in some typical areas, such as spare parts producing for on-orbit maintenance in space environments. Based on the improvement of the above factors, an additive manufacturing application process based on topology optimization of variable density method and digital simulation was proposed. Print volume of product was used as an explicit constraint, and the design goal of the product, such as strength and modal, was transformed into implicit stress constraints in the topology optimization of three-dimensional model, then stress constraints were independently extracted for secondary verification, finally the checked model is put into print. This process saves computational resources during optimization calculations and printing time, reduces print product’s weight, conserves supplies, and meets initial strength or modal design goals. This process greatly exploited the advantages of additive manufacturing in product manufacturing and made up for the shortcomings of traditional manufacturing processes that can not directly output a relatively abstract model after topological optimization. Under the constraints of saving material and increasing strength, it becomes optimum solution in the manufacture of specific products.


2021 ◽  
Vol 1199 (1) ◽  
pp. 012086
Author(s):  
M Stepanek ◽  
K Raz ◽  
Z Chval

Abstract This paper deals with the topology optimizations of tool holder where three different mass targets were required. The holder was loaded with 499 N. Weight reduction of the tool holder placed in tool turret can positively affect the bearing durability. Easier manipulation with the holder is one of the results. In the process of the topological optimization manufacturing constraints, such as overhang prevention, self-supporting and material spreading were defined for needs of Direct Metal Laser Sintering production technology. Structural analyses of three obtained geometries were simulated for evaluation of the stiffness in three main directions of the tool holder. Finally, the weight and the stiffness of each individual geometry was compared and prepared for manufacturing.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3667
Author(s):  
Mashooq A. Bhat ◽  
Ahmed M. Naglah ◽  
Siddique Akber Ansari ◽  
Hanaa M. Al-Tuwajiria ◽  
Abdullah Al-Dhfyan

A ChCl: Gly (DESs) promoted environmentally benign method was developed for the first time using the reaction of aryl aldehydes and dimedone to give excellent yields of xanthene analogues. The major application of this present protocol is the use of green solvent, a wide range of substrate, short reaction times, ease of recovery, the recyclability of the catalyst, high reaction yield, and ChCl: Gly as an alternative catalyst and solvent. In addition to this, all the synthesized compounds were evaluated for their in vitro antimycobacterial activity against M. tuberculosis H37Ra (MTB) and M. bovis BCG strains. The compounds 3d, 3e, 3f, and 3j showed significant antitubercular activity against MTB and M. bovis strains with minimum inhibitory concentration (MIC) values of 2.5−15.10 µg/mL and 0.26–14.92 µg/mL, respectively. The compounds 3e, 3f, and 3j were found to be nontoxic against MCF-7, A549, HCT 116, and THP-1 cell lines. All the prepared compounds were confirmed by 1H NMR and 13C NMR analysis.


Author(s):  
James M. Gibert ◽  
Georges M. Fadel

This paper provides two separate methodologies for implementing the Voronoi Cell Finite Element Method (VCFEM) in topological optimization. Both exploit two characteristics of VCFEM. The first approach utilizes the property that a hole or inclusion can be placed in the element: the design variables for the topology optimization are sizes of the hole. In the second approach, we note that VCFEM may mesh the design domain as n sided polygons. We restrict our attention to hexagonal meshes of the domain while applying Solid Isotropic Material Penalization (SIMP) material model. Researchers have shown that hexagonal meshes are not subject to the checker boarding problem commonly associated with standard linear quad and triangle elements. We present several examples to illustrate the efficacy of the methods in compliance minimization as well as discuss the advantages and disadvantages of each method.


2015 ◽  
Vol 137 (9) ◽  
Author(s):  
Teng Zhou ◽  
Yifan Xu ◽  
Zhenyu Liu ◽  
Sang Woo Joo

Topology optimization method is applied to a contraction–expansion structure, based on which a simplified lateral flow structure is generated using the Boolean operation. A new one-layer mixer is then designed by sequentially connecting this lateral structure and bent channels. The mixing efficiency is further optimized via iterations on key geometric parameters associated with the one-layer mixer designed. Numerical results indicate that the optimized mixer has better mixing efficiency than the conventional contraction–expansion mixer for a wide range of the Reynolds number.


2021 ◽  
pp. 1-31
Author(s):  
Lorenzo Pinelli ◽  
Andrea Amedei ◽  
Enrico Meli ◽  
Federico Vanti ◽  
Benedetta Romani ◽  
...  

Abstract The need for high performances is pushing the complexity of mechanical design at very high levels, especially for turbomachinery components. Structural topology optimization methods together with additive manufacturing techniques for high resistant alloys are considered very promising tools, but their potentialities have not been deeply investigated yet for critical rotating components like new-generation turbine blades. This research work proposes a methodology for the design, the optimization and the additive manufacturing of extremely stressed turbomachinery components like turbine blade-rows. The presented procedure pays particular attention to important aspects of the problems as fluid-structure interactions and fatigue of materials, going beyond the standard structural optimization approaches found in the literature. The numerical procedure shows robustness and efficiency, making the proposed methodology a good tool for rapid design and prototyping, and for reducing the design costs and the time-to-market typical of these mechanical elements. The procedure has been applied to a low-pressure turbine rotor to improve the aeromechanical behavior while keeping the aerodynamic performance. From the original geometry, mode-shapes, forcing functions and aerodynamic damping have been numerically evaluated and are used as input data for the following topological optimization. Finally, the optimized geometry has been verified in order to confirm the improved aeromechanical design. After the structural topology optimization, the final geometries provided by the procedure have been then properly rendered to make them suitable for additive manufacturing. Some prototypes of the new optimized turbine blade have been manufactured to be tested in terms of fatigue.


2021 ◽  
Author(s):  
Hae Seong Jeon ◽  
Ji Min Kim ◽  
Yeon Moon Choo

Abstract Korea’s river design standards set general design standards for river and river-related projects in Korea, which systematize the technologies and methods involved in river-related projects. This includes measurement methods for parts necessary for river design, but do not include information on shear stress. Shear Stress is to one of the factors necessary for river design and operation. Shear stress is one of the most important hydraulic factors used in the fields of water especially for artificial channel design. Shear stress is calculated from the frictional force caused by viscosity and fluctuating fluid velocity. Current methods are based on past calculations, but factors such as boundary shear stress or energy gradient are difficult to actually measure or estimate. The point velocity throughout the entire cross section is needed to calculate the velocity gradient. In other words, the current Korea’s river design standards use tractive force, critical tractive force instead of shear stress because it is more difficult to calculate the shear stress in the current method. However, it is difficult to calculate the exact value due to the limitations of the formula to obtain the river factor called the tractive force. In addition, tractive force has limitations that use empirically identified base value for use in practice. This paper focuses on the modeling of shear stress distribution in open channel turbulent flow using entropy theory. In addition, this study suggests shear stress distribution formula, which can be easily used in practice after calculating the river-specific factor T. and that the part of the tractive force and critical tractive force in the Korea’s river design standards should be modified by the shear stress obtained by the proposed shear stress distribution method. The present study therefore focuses on the modeling of shear stress distribution in open channel turbulent flow using entropy theory. The shear stress distribution model is tested using a wide range of forty-two experimental runs collected from the literature. Then, an error analysis is performed to further evaluate the accuracy of the proposed model. The results revealed a correlation coefficient of approximately 0.95–0.99, indicating that the proposed method can estimate shear stress distribution accurately. Based on this, the results of the distribution of shear stress after calculating the river-specific factors show a correlation coefficient of about 0.86 to 0.98, which suggests that the equation can be applied in practice.


Author(s):  
Manas Metar

Abstract: Weight reduction techniques have been practiced by automobile manufacturers for the purpose of long range, less fuel consumption and achieving higher speeds. Due to the numerous set objectives that must be met, especially with respect to of car safety, automotive chassis design for vehicle weight reduction is a difficult task. In passenger classed vehicles using a monocoque chassis for vehicle construction has been a great solution for reducing overall wight of the vehicle body yet the structure is more stiffened and sturdier. However, some parts such as A-pillar, B-pillar, roof structure, floor pan can be further optimized to reduce more weight without affecting the strength needed for respective purposes. In this paper, the main focus is on reducing weight of the B-pillar. The B-pillar of a passenger car has been optimized using topology optimization and optimum weight reduction has been done. The modelling and simulation are done using SOLIDWORKS 3D software. The B-pillar in this study has been subjected to a static load of 140 KN. Further by providing goals and constraints the optimization was caried out. The results of Finite Element Analysis (FEA) of the original model are explained. The Topology Optimization resulted in reducing 53% of the original weight of the B-pillar. Keywords: Structural optimization techniques, weight reduction techniques, weight reduction technologies, need for weight reduction, Topology optimization, B-pillar design, structural optimization of B-pillar, Topology optimization of B-pillar.


Sign in / Sign up

Export Citation Format

Share Document