scholarly journals Throughput of Customised ZigBee Stack- A Mathematical Modelling

2019 ◽  
Vol 8 (4) ◽  
pp. 5250-5255

Research work is being done in the field of wireless communication protocols in order to find the desired applicability suitable to the end user. ZigBee protocol is chosen due to its reliable, long range and robust communication. In this direction there is need of designing a common communication protocol to realize a virtual control network by customizing the existing ZigBee protocol stack. It is also required to embed internet support protocols in different layers of the proposed stack so as to enable the entire network with internet connectivity. The proposed application aims at interoperating different devices under user personal area network, this fact has led to propose a new protocol stack with which every device of the network can be easily operated or controlled with enhanced network capabilities like resource sharing, additional middle layer for realising the proposed application using WPAN christened as ZigBee IP [ZI] stack. ZI stack is designed and the corresponding mathematical modelling is done in order to find better stack than ZigBee. This paper presents the design and modelling of throughput which is one of the important design parameters. Both the stacks viz., ZI and ZigBee are also compared w.r.t throughput

Vestnik MGSU ◽  
2019 ◽  
pp. 367-375 ◽  
Author(s):  
Elena A. Korol’ ◽  
Marina N. Berlinova

Introduction. When building residential, public and administrative buildings of various spatial structural designs (monolithic, precast-monolithic, precast, etc.), it is common practice to design self-sustaining (non-structural) outer walls within a storey. Developing and using new design and fabrication solutions of multilayer industrial-made wall panels in modern construction practice makes actual the issue of improving methods of their calculation in different stages of maintenance and under various sorts and combinations of loads and effects. However, there is an infinite variety of possible loading levels in practice and, therefore, the same variety of design approaches would be required. This is obviously unacceptable for engineering calculations, hence it is necessary to provide a monolithic matrix bond of layers, both technologically and structurally, which can provide a generalized approach to the calculation of multilayer enclosing structures in accordance with current design standards. Materials and methods. The article describes structural features of a multilayer wall panel made of structural concrete with the middle layer of concrete with low thermal conductivity and monolithic bond of layers. These features have an influence on creation of a design model and a calculation procedure in the stages of transportation, installation and maintenance. Results. The article has examined the structures described above in the sense of design parameters that provide their competitive advantages in strength and maintenance as compared with conventional mass-built enclosures. Conclusions. The studies demonstrate that when combining loads of force and non-force character, stresses in the considered structure do not exceed allowable values in all the stages what proves the prospects of using the multilayer panels with monolithic bond of layers for erection of various-purpose frame-panel buildings.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Tsung-Han Lee ◽  
Hung-Chi Chu ◽  
Lin-Huang Chang ◽  
Hung-Shiou Chiang ◽  
Yen-Wen Lin

6LoWPAN technology has attracted extensive attention recently. It is because 6LoWPAN is one of Internet of Things standard and it adapts to IPv6 protocol stack over low-rate wireless personal area network, such as IEEE 802.15.4. One view is that IP architecture is not suitable for low-rate wireless personal area network. It is a challenge to implement the IPv6 protocol stack into IEEE 802.15.4 devices due to that the size of IPv6 packet is much larger than the maximum packet size of IEEE 802.15.4 in data link layer. In order to solve this problem, 6LoWPAN provides header compression to reduce the transmission overhead for IP packets. In addition, two selected routing schemes, mesh-under and route-over routing schemes, are also proposed in 6LoWPAN to forward IP fragmentations under IEEE 802.15.4 radio link. The distinction is based on which layer of the 6LoWPAN protocol stack is in charge of routing decisions. In route-over routing scheme, the routing distinction is taken at the network layer and, in mesh-under, is taken by the adaptation layer. Thus, the goal of this research is to understand the performance of two routing schemes in 6LoWPAN under error-prone channel condition.


In this paper,CPW fed Trapezoid shape patch antenna is analyzed and investigated for Wireless Local Area Network (WLAN) application. The proposed antenna is fabricated on FR4 substrate having dimensions of 19mm ×21.2mm ×1.6mm. It resonates at 5.44 GHz frequency with peak return loss of 25.8 dB. The parametric study of proposed antenna is carried out to understand the effect of different values of ground plane on the impedance bandwidth, return loss of the antenna andalso to optimize the antenna parameters. The CPW-fed is used to enhance the bandwidth and to reduce the return loss of the antenna. The importance of different design parameters like current distribution, S-parameter, gain, and radiation pattern are studied. The results of the proposed antenna are useful for WLAN Application.


2009 ◽  
pp. 658-677 ◽  
Author(s):  
Pedro Furtado

Running large data warehouses (DWs) efficiently over low cost platforms places special requirements on the design of system architecture. The idea is to have the DW on a set of low-cost nodes in a nondedicated local area network (LAN). Nodes can run any relational database engine, and the system relies on a partitioning strategy and query processing middle layer. These characteristics are in contrast with typical parallel database systems, which rely on fast dedicated interconnects and hardware, as well as a specialized parallel query optimizer for a specific database engine. This chapter describes the architecture of the nodepartitioned data warehouse (NPDW), designed to run on the low cost environment, focusing on the design for partitioning, efficient parallel join and query transformations. Given the low reliability of the target environment, we also show how replicas are incorporated in the design of a robust NPDW strategy with availability guarantees and how the replicas are used for always-on, always efficient behavior in the presence of periodic load and maintenance tasks.


Author(s):  
Toshio Mitsufuji

This study aims at investigating the implementation process of electronic network systems in Japanese large firms, focusing on the innovativeness among industries to which firms belong. The electronic network systems such as Local Area Network (LAN) have spread rapidly during last several years. Accordingly, many firms in Japan have introduced them in their organizations. After the advent of the computer invention, computer and telecommunications technologies have merged into information technology, making a remarkable progress constantly for several decades. The electronic network systems are a kind of information technology, going back to 1950s when data communications systems were first developed. In the beginning were these systems managed by professional people. However, due to the rapid progress of the information technology, even untrained people who have no specific knowledge about IT or do not belong to the IT section have been able to use the electronic network systems in business organizations since the late 1980s. In addition, especially with the appearance of multimedia systems and the expansion of the usage of Internet, many organizations have begun introducing electronic network systems since 1990s. For this study, we sent questionnaires in 1996 to Japanese large firms in which they employed more than 1000 people. Based on the results and the interviews made in connection with this research work, we analyze first the state of the introduction of the electronic network systems, focusing on the innovativeness of firms. Next, we examine why the electronic network systems have come into wide use among Japanese large firms.


2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Jamila Bhar

IEEE 802.15.4 is an important standard for Low Rate Wireless Personal Area Network (LRWPAN). The IEEE 802.15.4 presents a flexible MAC protocol that provides good efficiency for data transmission by adapting its parameters according to characteristics of different applications. In this research work, some restrictions of this standard are explained and an improvement of traffic efficiency by optimizing MAC layer is proposed. Implementation details for several blocks of communication system are carefully modeled. The protocol implementation is done using VHDL language. The analysis gives a full understanding of the behavior of the MAC protocol with regard to backoff delay, data loss probability, congestion probability, slot effectiveness, and traffic distribution for terminals. Two ideas are proposed and tested to improve efficiency of CSMA/CA mechanism for IEEE 802.15.4 MAC Layer. Primarily, we dynamically adjust the backoff exponent (BE) according to queue level of each node. Secondly, we vary the number of consecutive clear channel assessment (CCA) for packet transmission. We demonstrate also that slot compensation provided by the enhanced MAC protocol can greatly avoid unused slots. The results show the significant improvements expected by our approach among the IEEE 802.15.4 MAC standards. Synthesis results show also hardware performances of our proposed architecture.


1978 ◽  
Vol 100 (4) ◽  
pp. 566-570 ◽  
Author(s):  
B. Nimmo ◽  
R. Evans

This paper introduces and provides a first order thermal cycle analysis of a new power plant design, the absorption-regeneration power cycle. Preliminary analysis indicates that this new cycle may have potential for increased operating efficiencies compared to the modified Rankine cycle presently in use for most stationary electrical power production. Graphs are presented to illustrate calculated efficiencies as well as some important design parameters of the cycle. Research work on extending presently available thermo-chemical data required to improve the model analysis is suggested.


Intravascular stenting is the leading treatment procedure for atherosclerotic coronary heart diseases. Among the various procedures, it is simpler and faster with a high initial success rate. Stent design, stent material, and clinical procedure decide the efficacy and life of stents. Strut thickness and crown radius are two essential design parameters that dictate expansion characteristics of stents. This research work discusses computational analysis of a specific stent, to explore the influence of thickness of strut on the deployment characteristics like stress/strain, foreshortening, recoil, and dog boning. The optimum stent design is one which gives maximum expansion with minimum stress distribution, dogboning, and elastic recoil. Five similar stent models with thickness ranges from 65μ to 105µ were modeled and computational method was adopted to simulate the transitory expansion nature of stent/balloon system. The FE results were substantiated with an in-vitro experiment. It was found that strut thickness has a major impact on stent recoil and low impact on foreshortening and dogboning. Foreshortening per unit expansion was almost same for entire models. Strut thickness 70μ to 80μ gives better expansion characteristics for the model under study.


A 350 kilogram per hour capacity Cupola Furnace was designed and fabricated from locally available materials for the production of cast iron using pig iron, oily or contaminated steel scraps, foundry returns and fluxes. The main fuel used is metallurgical coke. After analyzing the design parameters, the metallic shells were fabricated in four segments for easy lining: the stack zone, preheating zone, combustion zone and the hearth. Mild steel sheet of 4 mm thickness was procured, marked out as per the design drawing, sliced, rolled into cylindrical shapes and welded together at each seam. The internal configuration was lined first with asbestos paper measuring 4 mm thick using water-glass to enable it adhere to the internal shell of the segments, thereafter, a less dense insulating refractory material was used and finally fireclay refractory bricks were used for lining as they interface directly with the molten metal. The various segments were then assembled and erected with the blower connected to the combustion zone. The research work also contains the materials and components bill.


Sign in / Sign up

Export Citation Format

Share Document