scholarly journals An Effective Stratified K-Fold Algorithm with Logistic Regression for Drug Feedback Data

2020 ◽  
Vol 8 (6) ◽  
pp. 1964-1968

Drug reviews are commonly used in pharmaceutical industry to improve the medications given to patients. Generally, drug review contains details of drug name, usage, ratings and comments by the patients. However, these reviews are not clean, and there is a need to improve the cleanness of the review so that they can be benefited for both pharmacists and patients. To do this, we propose a new approach that includes different steps. First, we add extra parameters in the review data by applying VADER sentimental analysis to clean the review data. Then, we apply different machine learning algorithms, namely linear SVC, logistic regression, SVM, random forest, and Naive Bayes on the drug review specify dataset names. However, we found that the accuracy of these algorithms for these datasets is limited. To improve this, we apply stratified K-fold algorithm in combination with Logistic regression. With this approach, the accuracy is increased to 96%.

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1677
Author(s):  
Ersin Elbasi ◽  
Ahmet E. Topcu ◽  
Shinu Mathew

COVID-19 is a community-acquired infection with symptoms that resemble those of influenza and bacterial pneumonia. Creating an infection control policy involving isolation, disinfection of surfaces, and identification of contagions is crucial in eradicating such pandemics. Incorporating social distancing could also help stop the spread of community-acquired infections like COVID-19. Social distancing entails maintaining certain distances between people and reducing the frequency of contact between people. Meanwhile, a significant increase in the development of different Internet of Things (IoT) devices has been seen together with cyber-physical systems that connect with physical environments. Machine learning is strengthening current technologies by adding new approaches to quickly and correctly solve problems utilizing this surge of available IoT devices. We propose a new approach using machine learning algorithms for monitoring the risk of COVID-19 in public areas. Extracted features from IoT sensors are used as input for several machine learning algorithms such as decision tree, neural network, naïve Bayes classifier, support vector machine, and random forest to predict the risks of the COVID-19 pandemic and calculate the risk probability of public places. This research aims to find vulnerable populations and reduce the impact of the disease on certain groups using machine learning models. We build a model to calculate and predict the risk factors of populated areas. This model generates automated alerts for security authorities in the case of any abnormal detection. Experimental results show that we have high accuracy with random forest of 97.32%, with decision tree of 94.50%, and with the naïve Bayes classifier of 99.37%. These algorithms indicate great potential for crowd risk prediction in public areas.


2021 ◽  
Vol 42 (Supplement_1) ◽  
Author(s):  
M J Espinosa Pascual ◽  
P Vaquero Martinez ◽  
V Vaquero Martinez ◽  
J Lopez Pais ◽  
B Izquierdo Coronel ◽  
...  

Abstract Introduction Out of all patients admitted with Myocardial Infarction, 10 to 15% have Myocardial Infarction with Non-Obstructive Coronaries Arteries (MINOCA). Classification algorithms based on deep learning substantially exceed traditional diagnostic algorithms. Therefore, numerous machine learning models have been proposed as useful tools for the detection of various pathologies, but to date no study has proposed a diagnostic algorithm for MINOCA. Purpose The aim of this study was to estimate the diagnostic accuracy of several automated learning algorithms (Support-Vector Machine [SVM], Random Forest [RF] and Logistic Regression [LR]) to discriminate between people suffering from MINOCA from those with Myocardial Infarction with Obstructive Coronary Artery Disease (MICAD) at the time of admission and before performing a coronary angiography, whether invasive or not. Methods A Diagnostic Test Evaluation study was carried out applying the proposed algorithms to a database constituted by 553 consecutive patients admitted to our Hospital with Myocardial Infarction. According to the definitions of 2016 ESC Position Paper on MINOCA, patients were classified into two groups: MICAD and MINOCA. Out of the total 553 patients, 214 were discarded due to the lack of complete data. The set of machine learning algorithms was trained on 244 patients (training sample: 75%) and tested on 80 patients (test sample: 25%). A total of 64 variables were available for each patient, including demographic, clinical and laboratorial features before the angiographic procedure. Finally, the diagnostic precision of each architecture was taken. Results The most accurate classification model was the Random Forest algorithm (Specificity [Sp] 0.88, Sensitivity [Se] 0.57, Negative Predictive Value [NPV] 0.93, Area Under the Curve [AUC] 0.85 [CI 0.83–0.88]) followed by the standard Logistic Regression (Sp 0.76, Se 0.57, NPV 0.92 AUC 0.74 and Support-Vector Machine (Sp 0.84, Se 0.38, NPV 0.90, AUC 0.78) (see graph). The variables that contributed the most in order to discriminate a MINOCA from a MICAD were the traditional cardiovascular risk factors, biomarkers of myocardial injury, hemoglobin and gender. Results were similar when the 19 patients with Takotsubo syndrome were excluded from the analysis. Conclusion A prediction system for diagnosing MINOCA before performing coronary angiographies was developed using machine learning algorithms. Results show higher accuracy of diagnosing MINOCA than conventional statistical methods. This study supports the potential of machine learning algorithms in clinical cardiology. However, further studies are required in order to validate our results. FUNDunding Acknowledgement Type of funding sources: None. ROC curves of different algorithms


2019 ◽  
Vol 9 (14) ◽  
pp. 2789 ◽  
Author(s):  
Sadaf Malik ◽  
Nadia Kanwal ◽  
Mamoona Naveed Asghar ◽  
Mohammad Ali A. Sadiq ◽  
Irfan Karamat ◽  
...  

Medical health systems have been concentrating on artificial intelligence techniques for speedy diagnosis. However, the recording of health data in a standard form still requires attention so that machine learning can be more accurate and reliable by considering multiple features. The aim of this study is to develop a general framework for recording diagnostic data in an international standard format to facilitate prediction of disease diagnosis based on symptoms using machine learning algorithms. Efforts were made to ensure error-free data entry by developing a user-friendly interface. Furthermore, multiple machine learning algorithms including Decision Tree, Random Forest, Naive Bayes and Neural Network algorithms were used to analyze patient data based on multiple features, including age, illness history and clinical observations. This data was formatted according to structured hierarchies designed by medical experts, whereas diagnosis was made as per the ICD-10 coding developed by the American Academy of Ophthalmology. Furthermore, the system is designed to evolve through self-learning by adding new classifications for both diagnosis and symptoms. The classification results from tree-based methods demonstrated that the proposed framework performs satisfactorily, given a sufficient amount of data. Owing to a structured data arrangement, the random forest and decision tree algorithms’ prediction rate is more than 90% as compared to more complex methods such as neural networks and the naïve Bayes algorithm.


2021 ◽  
Vol 5 (1) ◽  
pp. 35
Author(s):  
Uttam Narendra Thakur ◽  
Radha Bhardwaj ◽  
Arnab Hazra

Disease diagnosis through breath analysis has attracted significant attention in recent years due to its noninvasive nature, rapid testing ability, and applicability for patients of all ages. More than 1000 volatile organic components (VOCs) exist in human breath, but only selected VOCs are associated with specific diseases. Selective identification of those disease marker VOCs using an array of multiple sensors are highly desirable in the current scenario. The use of efficient sensors and the use of suitable classification algorithms is essential for the selective and reliable detection of those disease markers in complex breath. In the current study, we fabricated a noble metal (Au, Pd and Pt) nanoparticle-functionalized MoS2 (Chalcogenides, Sigma Aldrich, St. Louis, MO, USA)-based sensor array for the selective identification of different VOCs. Four sensors, i.e., pure MoS2, Au/MoS2, Pd/MoS2, and Pt/MoS2 were tested under exposure to different VOCs, such as acetone, benzene, ethanol, xylene, 2-propenol, methanol and toluene, at 50 °C. Initially, principal component analysis (PCA) and linear discriminant analysis (LDA) were used to discriminate those seven VOCs. As compared to the PCA, LDA was able to discriminate well between the seven VOCs. Four different machine learning algorithms such as k-nearest neighbors (kNN), decision tree, random forest, and multinomial logistic regression were used to further identify those VOCs. The classification accuracy of those seven VOCs using KNN, decision tree, random forest, and multinomial logistic regression was 97.14%, 92.43%, 84.1%, and 98.97%, respectively. These results authenticated that multinomial logistic regression performed best between the four machine learning algorithms to discriminate and differentiate the multiple VOCs that generally exist in human breath.


2020 ◽  
Vol 8 (5) ◽  
pp. 5353-5362

Background/Aim: Prostate cancer is regarded as the most prevalent cancer in the word and the main cause of deaths worldwide. The early strategies for estimating the prostate cancer sicknesses helped in settling on choices about the progressions to have happened in high-chance patients which brought about the decrease of their dangers. Methods: In the proposed research, we have considered informational collection from kaggle and we have done pre-processing tasks for missing values .We have three missing data values in compactness attribute and two missing values in fractal dimension were replaced by mean of their column values .The performance of the diagnosis model is obtained by using methods like classification, accuracy, sensitivity and specificity analysis. This paper proposes a prediction model to predict whether a people have a prostate cancer disease or not and to provide an awareness or diagnosis on that. This is done by comparing the accuracies of applying rules to the individual results of Support Vector Machine, Random forest, Naive Bayes classifier and logistic regression on the dataset taken in a region to present an accurate model of predicting prostate cancer disease. Results: The machine learning algorithms under study were able to predict prostate cancer disease in patients with accuracy between 70% and 90%. Conclusions: It was shown that Logistic Regression and Random Forest both has better Accuracy (90%) when compared to different Machine-learning Algorithms.


2021 ◽  
Vol 35 (3) ◽  
pp. 265-272 ◽  
Author(s):  
Chun-Hung Chang ◽  
Chieh-Hsin Lin ◽  
Chieh-Yu Liu ◽  
Chih-Sheng Huang ◽  
Shaw-Ji Chen ◽  
...  

Background: d-glutamate, which is involved in N-methyl-d-aspartate receptor modulation, may be associated with cognitive ageing. Aims: This study aimed to use peripheral plasma d-glutamate levels to differentiate patients with mild cognitive impairment (MCI) and Alzheimer’s disease (AD) from healthy individuals and to evaluate its prediction ability using machine learning. Methods: Overall, 31 healthy controls, 21 patients with MCI and 133 patients with AD were recruited. Serum d-glutamate levels were measured using high-performance liquid chromatography (HPLC). Cognitive deficit severity was assessed using the Clinical Dementia Rating scale and the Mini-Mental Status Examination (MMSE). We employed four machine learning algorithms (support vector machine, logistic regression, random forest and naïve Bayes) to build an optimal predictive model to distinguish patients with MCI or AD from healthy controls. Results: The MCI and AD groups had lower plasma d-glutamate levels (1097.79 ± 283.99 and 785.10 ± 720.06 ng/mL, respectively) compared to healthy controls (1620.08 ± 548.80 ng/mL). The naïve Bayes model and random forest model appeared to be the best models for determining MCI and AD susceptibility, respectively (area under the receiver operating characteristic curve: 0.8207 and 0.7900; sensitivity: 0.8438 and 0.6997; and specificity: 0.8158 and 0.9188, respectively). The total MMSE score was positively correlated with d-glutamate levels ( r = 0.368, p < 0.001). Multivariate regression analysis indicated that d-glutamate levels were significantly associated with the total MMSE score ( B = 0.003, 95% confidence interval 0.002–0.005, p < 0.001). Conclusions: Peripheral plasma d-glutamate levels were associated with cognitive impairment and may therefore be a suitable peripheral biomarker for detecting MCI and AD. Rapid and cost-effective HPLC for biomarkers and machine learning algorithms may assist physicians in diagnosing MCI and AD in outpatient clinics.


2021 ◽  
Vol 21 ◽  
pp. 279-286
Author(s):  
Oleksandr Voloshchenko ◽  
Małgorzata Plechawska-Wójcik

The purpose of this paper is to compare classical machine learning algorithms for handwritten number classification. The following algorithms were chosen for comparison: Logistic Regression, SVM, Decision Tree, Random Forest and k-NN. MNIST handwritten digit database is used in the task of training and testing the above algorithms. The dataset consists of 70,000 images of numbers from 0 to 9. The algorithms are compared considering such criteria as the learning speed, prediction construction speed, host machine load, and classification accuracy. Each algorithm went through the training and testing phases 100 times, with the desired KPIs retained at each iteration. The results were averaged to reach reliable outcomes.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Luana Ibiapina Cordeiro Calíope Pinheiro ◽  
Maria Lúcia Duarte Pereira ◽  
Marcial Porto Fernandez ◽  
Francisco Mardônio Vieira Filho ◽  
Wilson Jorge Correia Pinto de Abreu ◽  
...  

Dementia interferes with the individual’s motor, behavioural, and intellectual functions, causing him to be unable to perform instrumental activities of daily living. This study is aimed at identifying the best performing algorithm and the most relevant characteristics to categorise individuals with HIV/AIDS at high risk of dementia from the application of data mining. Principal component analysis (PCA) algorithm was used and tested comparatively between the following machine learning algorithms: logistic regression, decision tree, neural network, KNN, and random forest. The database used for this study was built from the data collection of 270 individuals infected with HIV/AIDS and followed up at the outpatient clinic of a reference hospital for infectious and parasitic diseases in the State of Ceará, Brazil, from January to April 2019. Also, the performance of the algorithms was analysed for the 104 characteristics available in the database; then, with the reduction of dimensionality, there was an improvement in the quality of the machine learning algorithms and identified that during the tests, even losing about 30% of the variation. Besides, when considering only 23 characteristics, the precision of the algorithms was 86% in random forest, 56% logistic regression, 68% decision tree, 60% KNN, and 59% neural network. The random forest algorithm proved to be more effective than the others, obtaining 84% precision and 86% accuracy.


2021 ◽  
Vol 11 (1) ◽  
pp. 44
Author(s):  
Helen R. Gosselt ◽  
Maxime M. A. Verhoeven ◽  
Maja Bulatović-Ćalasan ◽  
Paco M. Welsing ◽  
Maurits C. F. J. de Rotte ◽  
...  

The goals of this study were to examine whether machine-learning algorithms outperform multivariable logistic regression in the prediction of insufficient response to methotrexate (MTX); secondly, to examine which features are essential for correct prediction; and finally, to investigate whether the best performing model specifically identifies insufficient responders to MTX (combination) therapy. The prediction of insufficient response (3-month Disease Activity Score 28-Erythrocyte-sedimentation rate (DAS28-ESR) > 3.2) was assessed using logistic regression, least absolute shrinkage and selection operator (LASSO), random forest, and extreme gradient boosting (XGBoost). The baseline features of 355 rheumatoid arthritis (RA) patients from the “treatment in the Rotterdam Early Arthritis CoHort” (tREACH) and the U-Act-Early trial were combined for analyses. The model performances were compared using area under the curve (AUC) of receiver operating characteristic (ROC) curves, 95% confidence intervals (95% CI), and sensitivity and specificity. Finally, the best performing model following feature selection was tested on 101 RA patients starting tocilizumab (TCZ)-monotherapy. Logistic regression (AUC = 0.77 95% CI: 0.68–0.86) performed as well as LASSO (AUC = 0.76, 95% CI: 0.67–0.85), random forest (AUC = 0.71, 95% CI: 0.61 = 0.81), and XGBoost (AUC = 0.70, 95% CI: 0.61–0.81), yet logistic regression reached the highest sensitivity (81%). The most important features were baseline DAS28 (components). For all algorithms, models with six features performed similarly to those with 16. When applied to the TCZ-monotherapy group, logistic regression’s sensitivity significantly dropped from 83% to 69% (p = 0.03). In the current dataset, logistic regression performed equally well compared to machine-learning algorithms in the prediction of insufficient response to MTX. Models could be reduced to six features, which are more conducive for clinical implementation. Interestingly, the prediction model was specific to MTX (combination) therapy response.


Sign in / Sign up

Export Citation Format

Share Document