scholarly journals Fault and calibration shift detection in a robust MEMS accelerometer array

2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Daniel Watson ◽  
Karl Reichard

The latest generation micro-electro-mechanical system(MEMS) accelerometers offer high bandwidth and low noisefloors previously limited to piezoelectric (PZT) based sensors.These relatively low cost MEMS sensors drastically expandthe financially practical applications for high frequency,vibration based, prognostics health management (PHM).This paper examines a robust array of MEMS accelerometersfor applications where sensor access after deploymentis difficult or infeasible. Three identical single axis MEMSaccelerometers were place in an array for testing. Insteadof a typical tri-axial configuration, the three sensors werealigned on a common axis. An auto-correlation algorithmwas used to detect gross system faults of individual sensorsin the array. A separate algorithm was developed to detectabnormal sensor sensitivity drift. The 3 sensor array wastested under a variety of conditions to test the developedalgorithms; power supply voltages were systematically variedaffecting the ratio-metric accelerometer sensitivity andindividual sensor mounts were purposely compromised tosimulate common fault symptoms. A decision logic treewas then implemented to respond to both types of faults.Results show the feasibility of implementing robust MEMSaccelerometer arrays using the latest generation of high bandwidthMEMS accelerometers. Planned future work includesdeploying the sensor array on tribology test equipment tovalidate MEMS sensor effectiveness compared to traditionalPZT based accelerometers.

2012 ◽  
Vol 201-202 ◽  
pp. 608-612
Author(s):  
Tie Liu Wang ◽  
Yang Dong ◽  
Jing Shen ◽  
Kui Leng ◽  
Hao Meng

Abstract: This article introduces a new digital inclinometer . It is designed by the combination of MEMS sensors and LPC1114 which is popular with low-power, low-cost 32-bit cortex-M0 embedded microprocessor on the market. Kalman fitter the Digital signal output of MEMS accelerometer and gyroscope . Then calculate the inclination angle in degrees. Finally, transfers data to a remote server. The instrument is low cost, fast signal processing speed, and solar green energy. It has a small size, light weight, high accuracy and high precision. Then, it can be widely used in the tower tilting real-time monitoring of electricity, buildings, bridges and gravity reference system.


Author(s):  
Lukas Blocher ◽  
Wolfram Mayer ◽  
Marco Arena ◽  
Dusan Radovic ◽  
Tobias Hiller ◽  
...  

2019 ◽  
Vol 9 (02) ◽  
pp. 63-67
Author(s):  
Indra Feriadi ◽  
Fajar Aswin ◽  
M Iqbal Nugraha

Vibration measurement technology using conventional sensors such as piezoelectric (PZT) Accelerometer is still expensive. Currently, many low-cost vibration measuring devices have been developed by using Micro Electro Mechanical System (MEMS) technology. This study aims to analyze the results of vibration measurement system MEMS Accelerometer ADXL345 with PZT Accelerometer. This research applies design and develop approach with comparative data analysis technique, that is comparing data of result of measurement of MEMS Accelerometer ADXL345 to PZT Accelerometer Vibroport80. The construction comprises the ADXL345 sensor connected to the Arduino Mega 2560 microcontroller operated by Widows operating system and programming language Arduino IDE 1.08. Testing of measurements at Bearing speeds of 500, 1000, and 1500 RPM with length of time measurements at 5, 10, and 20 seconds respectively. The analysis of the test results shows that the MEMS Accelerometer ADXL345 of vibration measurement system can measure, process and display vibration measurement data larger 3% than PZT Accelerometer and can provide the best measurement accuracy at 20 seconds measurement length of time.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 11 ◽  
Author(s):  
Chuanglu Chen ◽  
Zhiqiang Li ◽  
Yitao Zhang ◽  
Shaolong Zhang ◽  
Jiena Hou ◽  
...  

During pulse signal collection, width information of pulse waves is essential for the diagnosis of disease. However, currently used measuring instruments can only detect the amplitude while can’t acquire the width information. This paper proposed a novel wrist pulse signal acquisition system, which could realize simultaneous measurements of the width and amplitude of dynamic pulse waves under different static forces. A tailor-packaged micro-electro-mechanical system (MEMS) sensor array was employed to collect pulse signals, a conditioning circuit was designed to process the signals, and a customized algorithm was developed to compute the width. Experiments were carried out to validate the accuracy of the sensor array and system effectiveness. The results showed the system could acquire not only the amplitude of pulse wave but also the width of it. The system provided more information about pulse waves, which could help doctors make the diagnosis.


2018 ◽  
Vol 8 (9) ◽  
pp. 1571 ◽  
Author(s):  
Jiuqiang Deng ◽  
Wei Ren ◽  
Hanwen Zhang ◽  
Yong Luo ◽  
Xi Zhou ◽  
...  

The micro-electro-mechanical system (MEMS) accelerometer is widely adopted in many engineering control systems due to its extraordinary performance with high bandwidth, small size and low weight. However, massive drift caused by its insensitively at low frequency is the main factor which limits its performance. It leads to integral saturation when the feedforward method is used and hinders the improvement of disturbance suppression ability at low frequency, which is a significant factor for evaluating the closed-loop performance of a high-precision tracking system. To solve this problem, a modified disturbance observer structure and its corresponding new controller, which can improve disturbance suppression performance at low frequency by effectively rejecting more drift and weakening the occurrence possibility of integral saturation when drift exists, are proposed. Detailed analyses and a series of comparative experimental results verify that the proposed method can effectively enhance disturbance suppression performance at low frequency.


2006 ◽  
Vol 13 (2) ◽  
pp. 127-135 ◽  
Author(s):  
Bradford S. Davis ◽  
Tim Denison ◽  
Jinbo Kuang

Analog Devices (ADI) has designed and fabricated a monolithic high-g acceleration sensor (ADXSTC3-HG) fabricated with the ADI silicon-on-insulator micro-electro-mechanical system (SOI-MEMS) process. The SOI-MEMS sensor structure has a thickness of 10 um, allowing for the design of inertial sensors with excellent cross-axis rejection. The high-g accelerometer discussed in this paper was designed to measure in-plane acceleration to 10,000 g while subjected to 100,000 g in the orthogonal axes. These requirements were intended to meet Army munition applications. The monolithic sensor was packaged in an 8-pin leadless chip carrier (LCC-8) and was successfully demonstrated by the US Army Research Laboratory (ARL) as part of an inertial measurement unit during an instrumented flight experiment of artillery projectiles launched at 15,000 g.


2012 ◽  
Vol 226-228 ◽  
pp. 2107-2110
Author(s):  
Hu Sheng Guo ◽  
Bin Yan ◽  
Zhi Dong Wu

The performance of the Ocean Bottom Seismometers (OBS) in seismic wave field measurement is vital to seismic exploration. In order to improve the performance of OBS, we have been developed a new Ocean Bottom Seismometer based 3-component MEMS accelerometer sensors. In order to sample seismic data synchronously, we have been designed multichannel A/D unit under the control of MSP430.We also are involved in a handle and sophisticated equipment allows to storage sampling data in the SD card module. The system based MEMS sensor are compared with conventional analog moving coil geophones, the result shows that the new measurement system with the advantage of high dynamic range, low noise and anti-jamming that suit for the high resolution seismicity information. The paper show that the new digital OBS using MEMS accelerometer will replace the tradition OBS in oil exploration, scientific research and seabed surveys.


2021 ◽  
Vol 13 (15) ◽  
pp. 8421
Author(s):  
Yuan Gao ◽  
Jiandong Huang ◽  
Meng Li ◽  
Zhongran Dai ◽  
Rongli Jiang ◽  
...  

Uranium mining waste causes serious radiation-related health and environmental problems. This has encouraged efforts toward U(VI) removal with low cost and high efficiency. Typical uranium adsorbents, such as polymers, geopolymers, zeolites, and MOFs, and their associated high costs limit their practical applications. In this regard, this work found that the natural combusted coal gangue (CCG) could be a potential precursor of cheap sorbents to eliminate U(VI). The removal efficiency was modulated by chemical activation under acid and alkaline conditions, obtaining HCG (CCG activated with HCl) and KCG (CCG activated with KOH), respectively. The detailed structural analysis uncovered that those natural mineral substances, including quartz and kaolinite, were the main components in CCG and HCG. One of the key findings was that kalsilite formed in KCG under a mild synthetic condition can conspicuous enhance the affinity towards U(VI). The best equilibrium adsorption capacity with KCG was observed to be 140 mg/g under pH 6 within 120 min, following a pseudo-second-order kinetic model. To understand the improved adsorption performance, an adsorption mechanism was proposed by evaluating the pH of uranyl solutions, adsorbent dosage, as well as contact time. Combining with the structural analysis, this revealed that the uranyl adsorption process was mainly governed by chemisorption. This study gave rise to a utilization approach for CCG to obtain cost-effective adsorbents and paved a novel way towards eliminating uranium by a waste control by waste strategy.


Sign in / Sign up

Export Citation Format

Share Document